Alcalde J, Smith, P, Haszeldine RS, Bond CE (2018) The potential for implementation of Negative Emission Technologies in Scotland. International Journal of Greenhouse Gas Control 76: 85-91. https://doi.org/10.1016/j.ijggc.2018.06.021
Araújo M, Feitosa M, Primo A, Taniguchi C, Souza H (2020) Mineralization of nitrogen and carbon from organic compost from animal production waste. Revista Caatinga 33(2): 310-320. https://doi.org/10.1590/1983-21252020v33n204rc
Boldrin A, Andersen JK, Møller J, Christensen TH, Favoino E (2009). Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Management & Research 27(8): 800-812. https://doi.org/10.1177/0734242X09345275
Carbonfuture (2021) https://carbonfuture.earth/. Accessed 5/5/21.
Cornelissen G, Pandit NR, Taylor P, Pandit BH, Sparrevik M, Schmidt HP (2016) Emissions and char quality of flame-curtain" Kon Tiki" Kilns for Farmer-Scale charcoal/biochar production. PloS one: 11(5), e0154617. https://doi.org/10.1371/journal.pone.0154617
EBIC (2021). https://www.biochar-industry.com/why/, accessed 5/5/21.
Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environmental Science & Technology 32(15): 2233-2237. https://doi.org/10.1021/es980004s
Hoffmann C, Van Hoey M, Zeumer B (2020) Decarbonization challenge for Steel. McKinsey & Company. https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel# Accessed 04 April 2021.
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Ithaka (2021) https://www.pinterest.com/ithakainstitute/kon-tiki-kiln/. Accessed 5/5/21.
Ladd B, Dumler S, Loret de Mola E, Anaya de la Rosa R, Borchard N (2018) Incremento de rentabilidad en producción del maíz en Perú: nfertilizantes y biochar. The Biologist 15(2). https://doi.org/10.24039/rtb201715294
Li L, Yao Z, You S, Wang CH, Chong C, Wang X (2019) Optimal design of negative emission hybrid renewable energy systems with biochar production. Applied energy 243: 233-249. https://doi.org/10.1016/j.apenergy.2019.03.183
MIDAGRI (n.d.). Evaporación. Ministerio de Desarrollo Agrario y Riego. https://www.midagri.gob.pe/portal/53-sector-agrario/el-clima/369-principales-variables-climaticas-de-la-costa#. Accessed 5/5/21.
Mohammadi A, Cowie A, Mai T, Anaya de la Rosa R, Kristiansen P, Brandao M, Joseph S (2016) Biochar use for climate-change mitigation in rice cropping systems. Journal of cleaner production: 116, 61-70. https://doi.org/10.1016/j.jclepro.2015.12.083
Mullingan J, Ellison G, Levin K, Lebling K, Rudee A (2020). 6 ways to remove carbon poluttion from the sky. World Resources Institute. https://www.wri.org/insights/6-ways-remove-carbon-pollution-sky. Accessed 5/5/21.
Puro (2021). https://puro.earth/. Accessed 5/5/21.
Ravi S, Sharratt B, Li J, Olshevski S, Meng Z, Zhang J (2016) Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential. Scientific reports 6(1): 1-7. https://doi.org/10.1038/srep35984
Rogelj J, Geden O, Cowie A, Reisinger A (2021) Net-zero emissions targets are vague: three ways to fix. Nature 591: 365-368. https://www.nature.com/articles/d41586-021-00662-3.
Seo J, Park J, Oh Y, Park S (2016) Estimation of total transport CO2 emissions generated by medium-and heavy-duty vehicles (MHDVs) in a sector of Korea. Energies 9(8): 638. https://doi.org/10.3390/en9080638
Schlesinger W (2020) http://ieg4.rccc.ou.edu/seminar/video/4458622e-83e9-4aa6-baea-d98deb6dab7e.html. Accessed 5/5/21.
Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Management, 1(2): 289-303. https://doi.org/10.4155/cmt.10.32
Thomas E, Borchard N, Sarmiento C, Atkinson R, Ladd B (2020) Key factors determining biochar sorption capacity for metal contaminants: a literature synthesis. Biochar 2: 151-163. https://doi.org/10.1007/s42773-020-00053-3
Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient, and mass loss during composting. Nutrient Cycling in Agroecosystems: 62(1), 15-24. https://doi.org/10.1023/A:1015137922816
Weng ZH, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S, Macdonald LM, Rose TJ, Rose MT, Kimber SW, Morris S, Cozzolino D (2017) Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 7(5), 371-376.
Zhu-Barker X, Bailey SK, Burger M, Horwath WR (2016) Greenhouse gas emissions from green waste composting windrow. Waste management 59: 70-79. https://doi.org/10.1016/j.wasman.2016.10.004
Ziegler K, Margallo M, Aldaco R, Irabien J, Vázquez I, Kahhat R (2018) Environmental performance of peruvian waste management systems under a life cycle approach. Chemical Engineering Transactions, 70: 1753-1758. doi: 10.3303/CET1870293
Ziegler K, Vázquez-Rowe I, Kahhat R, Margallo M (2019) Proyecto IKI-PNUMA. Avanzando y midiendo consumo y producción sostenible para una economía baja en carbono en economías de ingresos medios y nuevos países industrializados en Perú. Actividad 9: Rellenos Sanitarios. Pontificia Universidad Católica del Perú. http://perulca.com/wp-content/uploads/2019/04/documento_c.pdf. Accessed 5/5/21.