1. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
2. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20, 137–155 (2019).
3. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S.-M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Developmental Cell 56, 1363–1393 (2021).
4. Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: Still emerging. Cell Metab 34, 355–377 (2022).
5. Baldwin, A. S. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 246, 327–345 (2012).
6. Naugler, W. E. & Karin, M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18, 19–26 (2008).
7. Baud, V. & Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8, 33–40 (2009).
8. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12, 715–723 (2011).
9. Eluard, B., Thieblemont, C. & Baud, V. NF-κB in the New Era of Cancer Therapy. Trends Cancer 6, 677–687 (2020).
10. Nakanishi, C. & Toi, M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5, 297–309 (2005).
11. Oeckinghaus, A. & Ghosh, S. The NF-κB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology 1, a000034–a000034 (2009).
12. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621–663 (2000).
13. Sun, S.-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17, 545–558 (2017).
14. Baud, V. & Jacque, E. [The alternative NF-kB activation pathway and cancer: friend or foe?]. Med Sci (Paris) 24, 1083–1088 (2008).
15. Farese, R. V. & Walther, T. C. Lipid Droplets Finally Get a Little R-E-S-P-E-C-T. Cell 139, 855–860 (2009).
16. el-Aleem, S. A. & Schulz, H. Evaluation of inhibitors of fatty acid oxidation in rat myocytes. Biochem Pharmacol 36, 4307–4312 (1987).
17. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 3, 1445–1465 (2021).
18. Nagarajan, S. R., Butler, L. M. & Hoy, A. J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 9, 2 (2021).
19. Ranjan, R. A. et al. The Chorioallantoic Membrane Xenograft Assay as a Reliable Model for Investigating the Biology of Breast Cancer. Cancers (Basel) 15, 1704 (2023).
20. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Cellular fatty acid metabolism and cancer. Cell Metab 18, 153–161 (2013).
21. Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13, 1272–1279 (2011).
22. Capece, D. et al. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Semin Cell Dev Biol 98, 118–128 (2020).
23. Birkenmeier, K. et al. Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma are highly dependent on oxidative phosphorylation. Int J Cancer 138, 2231–2246 (2016).
24. Johnson, R. F., Witzel, I.-I. & Perkins, N. D. p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB. Cancer Res 71, 5588–5597 (2011).
25. Kawauchi, K., Araki, K., Tobiume, K. & Tanaka, N. p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 10, 611–618 (2008).
26. Baud, V. & Collares, D. Post-Translational Modifications of RelB NF-κB Subunit and Associated Functions. Cells 5, 22 (2016).
27. Pflug, K. M., Lee, D. W., Keeney, J. N. & Sitcheran, R. NF-κB-inducing kinase maintains mitochondrial efficiency and systemic metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 1869, 166682 (2023).
28. Jung, J.-U. et al. NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion. Curr Biol 26, 3288–3302 (2016).
29. Kamradt, M. L. et al. NIK promotes metabolic adaptation of glioblastoma cells to bioenergetic stress. Cell Death Dis 12, 271 (2021).
30. Nuan-Aliman, S., Bordereaux, D., Thieblemont, C. & Baud, V. The Alternative RelB NF-kB Subunit Exerts a Critical Survival Function upon Metabolic Stress in Diffuse Large B-Cell Lymphoma-Derived Cells. Biomedicines 10, 348 (2022).
31. Xu, Z. et al. RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biology 68, 102952 (2023).
32. Tzouanas, C. N. et al. Chronic metabolic stress drives developmental programs and loss of tissue functions in non-transformed liver that mirror tumor states and stratify survival. Preprint at bioRxiv 2023.11.30.569407 (2023) doi:10.1101/2023.11.30.569407.
33. Scherr, A.-L. et al. Etiology-independent activation of the LTβ-LTβR-RELB axis drives aggressiveness and predicts poor prognosis in HCC. Hepatology 80, 278–294 (2024).
34. Chen, X., Zhou, Y., Li, Z. & Wang, Z. Mining Database for the Expression and Clinical Significance of NF-κB Family in Hepatocellular Carcinoma. J Oncol 2020, 2572048 (2020).
35. Lee, D. W. et al. The NF-κB RelB protein is an oncogenic driver of mesenchymal glioma. PLoS One 8, e57489 (2013).
36. Wang, M. et al. RelB sustains endocrine resistant malignancy: an insight of noncanonical NF-κB pathway into breast Cancer progression. Cell Commun Signal 18, 128 (2020).
37. Zhang, Y. et al. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res 41, 66 (2022).
38. Zhou, X. et al. RelB plays an oncogenic role and conveys chemo-resistance to DLD-1 colon cancer cells. Cancer Cell Int 18, 181 (2018).
39. Cormier, F. et al. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS One 8, e59127 (2013).
40. Eluard, B. et al. The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood 139, 384–398 (2022).
41. Mulligan, E. A. et al. Expression and Activity of the NF-κB Subunits in Chronic Lymphocytic Leukaemia: A Role for RelB and Non-Canonical Signalling. Cancers (Basel) 15, 4736 (2023).
42. Dimitrakopoulos, F.-I. D. et al. Expression Of Intracellular Components of the NF-κB Alternative Pathway (NF-κB2, RelB, NIK and Bcl3) is Associated With Clinical Outcome of NSCLC Patients. Sci Rep 9, 14299 (2019).
43. Giopanou, I., Lilis, I., Papadaki, H., Papadas, T. & Stathopoulos, G. T. A link between RelB expression and tumor progression in laryngeal cancer. Oncotarget 8, 114019–114030 (2017).
44. Tao, Y. et al. Alternative NF-κB signaling promotes colorectal tumorigenesis through transcriptionally upregulating Bcl-3. Oncogene 37, 5887–5900 (2018).
45. Wang, X. et al. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9, 470–478 (2007).
46. Authier, H. et al. IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors. Proc Natl Acad Sci U S A 111, 14794–14799 (2014).
47. Kieusseian, A. et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107, 492–500 (2006).
48. Jacque, E., Tchenio, T., Piton, G., Romeo, P.-H. & Baud, V. RelA repression of RelB activity induces selective gene activation downstream of TNF receptors. Proc Natl Acad Sci U S A 102, 14635–14640 (2005).
49. Zhao, B. et al. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep 8, 1595–1606 (2014).
50. Akkaoui, M. et al. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Biochem J 420, 429–438 (2009).
51. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2, 2692–2703 (2007).
52. Amiel, A. et al. Proton NMR Enables the Absolute Quantification of Aqueous Metabolites and Lipid Classes in Unique Mouse Liver Samples. Metabolites 10, (2020).