Atlas, S.A. (2007). The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13(8 Suppl B), 9-20. doi: 10.18553/jmcp.2007.13.s8-b.9.
Baghaki, S., Yalcin, C.E., Baghaki, H.S., Aydin, S.Y., Daghan, B., and Yavuz, E. (2020). COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int J Infect Dis 101, 29-32. doi: 10.1016/j.ijid.2020.09.1466.
Bajwa, E.K., Khan, U.A., Januzzi, J.L., Gong, M.N., Thompson, B.T., and Christiani, D.C. (2009). Plasma C-reactive protein levels are associated with improved outcome in ARDS. Chest 136(2), 471-480. doi: 10.1378/chest.08-2413.
Boumpas, D.T., Chrousos, G.P., Wilder, R.L., Cupps, T.R., and Balow, J.E. (1993). Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 119(12), 1198-1208. doi: 10.7326/0003-4819-119-12-199312150-00007.
Brighton, B., Bhandari, M., Tornetta, P., 3rd, and Felson, D.T. (2003). Hierarchy of evidence: from case reports to randomized controlled trials. Clin Orthop Relat Res (413), 19-24. doi: 10.1097/01.blo.0000079323.41006.12.
Bryn, T., Yaqub, S., Mahic, M., Henjum, K., Aandahl, E.M., and Tasken, K. (2008). LPS-activated monocytes suppress T-cell immune responses and induce FOXP3+ T cells through a COX-2-PGE2-dependent mechanism. Int Immunol 20(2), 235-245. doi: 10.1093/intimm/dxm134.
Chan, J.F., Yuan, S., Kok, K.H., To, K.K., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395(10223), 514-523. doi: 10.1016/S0140-6736(20)30154-9.
Chen, J.S., Alfajaro, M.M., Chow, R.D., Wei, J., Filler, R.B., Eisenbarth, S.C., et al. (2021). Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J Virol. doi: 10.1128/JVI.00014-21.
Curran, C.S., Rivera, D.R., and Kopp, J.B. (2020). COVID-19 Usurps Host Regulatory Networks. Front Pharmacol 11, 1278. doi: 10.3389/fphar.2020.01278.
De Biasi, S., Lo Tartaro, D., Meschiari, M., Gibellini, L., Bellinazzi, C., Borella, R., et al. (2020). Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur J Immunol 50(9), 1283-1294. doi: 10.1002/eji.202048838.
Duan, Y.Q., Xia, M.H., Ren, L., Zhang, Y.F., Ao, Q.L., Xu, S.P., et al. (2020). Deficiency of Tfh Cells and Germinal Center in Deceased COVID-19 Patients. Curr Med Sci 40(4), 618-624. doi: 10.1007/s11596-020-2225-x.
Elshazli, R.M., Toraih, E.A., Elgaml, A., El-Mowafy, M., El-Mesery, M., Amin, M.N., et al. (2020). Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: A meta-analysis of 6320 patients. PLoS One 15(8), e0238160. doi: 10.1371/journal.pone.0238160.
Fauci, A.S., Dale, D.C., and Balow, J.E. (1976). Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med 84(3), 304-315. doi: 10.7326/0003-4819-84-3-304.
Fauci, A.S., Murakami, T., Brandon, D.D., Loriaux, D.L., and Lipsett, M.B. (1980). Mechanisms of corticosteroid action on lymphocyte subpopulations. VI. Lack of correlation between glucocorticosteroid receptors and the differential effects of glucocorticosteroids on T-cell subpopulations. Cell Immunol 49(1), 43-50. doi: 10.1016/0008-8749(80)90054-4.
Gottlieb, M., Sansom, S., Frankenberger, C., Ward, E., and Hota, B. (2020). Clinical Course and Factors Associated with Hospitalization and Critical Illness Among COVID-19 Patients in Chicago, Illinois. Acad Emerg Med. doi: 10.1111/acem.14104.
Gupta, A., Madhavan, M.V., Sehgal, K., Nair, N., Mahajan, S., Sehrawat, T.S., et al. (2020). Extrapulmonary manifestations of COVID-19. Nat Med 26(7), 1017-1032. doi: 10.1038/s41591-020-0968-3.
Gustine, J.N., and Jones, D. (2021). Immunopathology of Hyperinflammation in COVID-19. Am J Pathol 191(1), 4-17. doi: 10.1016/j.ajpath.2020.08.009.
He, G., Sun, W., Fang, P., Huang, J., Gamber, M., Cai, J., et al. (2020). The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou. J Med Virol. doi: 10.1002/jmv.25861.
Hong, W., Chen, Y., You, K., Tan, S., Wu, F., Tao, J., et al. (2020). Celebrex Adjuvant Therapy on Coronavirus Disease 2019: An Experimental Study. Frontiers in Pharmacology 11(1795). doi: 10.3389/fphar.2020.561674.
Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., et al. (2020). Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 63(5), 706-711. doi: 10.1007/s11427-020-1661-4.
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223), 497-506. doi: 10.1016/S0140-6736(20)30183-5.
Ing, A.J., Cocks, C., and Green, J.P. (2020). COVID-19: in the footsteps of Ernest Shackleton. Thorax. doi: 10.1136/thoraxjnl-2020-215091.
Ingraham, N.E., Barakat, A.G., Reilkoff, R., Bezdicek, T., Schacker, T., Chipman, J.G., et al. (2020). Understanding the renin-angiotensin-aldosterone-SARS-CoV axis: a comprehensive review. Eur Respir J 56(1). doi: 10.1183/13993003.00912-2020.
Janowitz, T., Gablenz, E., Pattinson, D., Wang, T.C., Conigliaro, J., Tracey, K., et al. (2020). Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut. doi: 10.1136/gutjnl-2020-321852.
Juszczak, G.R., and Stankiewicz, A.M. (2018). Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 82, 136-168. doi: 10.1016/j.pnpbp.2017.11.020.
Kaneko, N., Kuo, H.H., Boucau, J., Farmer, J.R., Allard-Chamard, H., Mahajan, V.S., et al. (2020). Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 183(1), 143-157 e113. doi: 10.1016/j.cell.2020.08.025.
Kellum, J.A., Lameire, N., and Group, K.A.G.W. (2013). Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17(1), 204. doi: 10.1186/cc11454.
Kim, J., Lee, S., Jeoung, D., Kim, Y.M., and Choe, J. (2018). Activated human B cells stimulate COX-2 expression in follicular dendritic cell-like cells via TNF-alpha. Mol Immunol 94, 1-6. doi: 10.1016/j.molimm.2017.12.004.
Kishaba, T., Tamaki, H., Shimaoka, Y., Fukuyama, H., and Yamashiro, S. (2014). Staging of acute exacerbation in patients with idiopathic pulmonary fibrosis. Lung 192(1), 141-149. doi: 10.1007/s00408-013-9530-0.
KM Tomera, R.M., JK Kittah (2020). Brief Report: Rapid Clinical Recovery from Severe COVID-19 with High Dose Famotidine
and High Dose Celecoxib Adjuvant Therapy. Enliven: Pharmacovigilance and Drug Safety 6(3).
Koralnik, I.J., and Tyler, K.L. (2020). COVID-19: A Global Threat to the Nervous System. Ann Neurol 88(1), 1-11. doi: 10.1002/ana.25807.
Kriz, W. (2004). Adenosine and ATP: traffic regulators in the kidney. J Clin Invest 114(5), 611-613. doi: 10.1172/JCI22669.
Kronbichler, A., Kresse, D., Yoon, S., Lee, K.H., Effenberger, M., and Shin, J.I. (2020). Asymptomatic patients as a source of COVID-19 infections: A systematic review and meta-analysis. Int J Infect Dis 98, 180-186. doi: 10.1016/j.ijid.2020.06.052.
Kuba, K., Imai, Y., and Penninger, J.M. (2006). Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 6(3), 271-276. doi: 10.1016/j.coph.2006.03.001.
Lei, F., Liu, Y.M., Zhou, F., Qin, J.J., Zhang, P., Zhu, L., et al. (2020). Longitudinal Association Between Markers of Liver Injury and Mortality in COVID-19 in China. Hepatology 72(2), 389-398. doi: 10.1002/hep.31301.
Lin, Z., Long, F., Yang, Y., Chen, X., Xu, L., and Yang, M. (2020). Serum ferritin as an independent risk factor for severity in COVID-19 patients. J Infect. doi: 10.1016/j.jinf.2020.06.053.
Liu, M., Yang, Y., Gu, C., Yue, Y., Wu, K.K., Wu, J., et al. (2007). Spike protein of SARS-CoV stimulates cyclooxygenase-2 expression via both calcium-dependent and calcium-independent protein kinase C pathways. FASEB J 21(7), 1586-1596. doi: 10.1096/fj.06-6589com.
Long, Q.X., Tang, X.J., Shi, Q.L., Li, Q., Deng, H.J., Yuan, J., et al. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. doi: 10.1038/s41591-020-0965-6.
Mahase, E. (2020). Covid-19: Demand for dexamethasone surges as RECOVERY trial publishes preprint. BMJ 369, m2512. doi: 10.1136/bmj.m2512.
Malone, R. (2021). More Than Just Heartburn: Does Famotidine Effectively Treat Patients with COVID-19? (Epub ahead of print) Digestive Diseases and Sciences. doi: 10.1007/s10620-021-06875-w.
Malone, R., Tisdall, P., Fremont-Smith, P., Liu, Y., Huang, X.-P., White, K., et al. (2021). COVID-19: Famotidine, Histamine, Mast Cells, and Mechanisms. (In Press) Frontiers in Pharmacology. doi: 10.21203/rs.3.rs-30934/v1.
Meduri, G.U., Annane, D., Confalonieri, M., Chrousos, G.P., Rochwerg, B., Busby, A., et al. (2020). Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med 46(12), 2284-2296. doi: 10.1007/s00134-020-06289-8.
Meduri, G.U., and Chrousos, G.P. (2020). General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 11, 161. doi: 10.3389/fendo.2020.00161.
Mizumoto, K., Kagaya, K., Zarebski, A., and Chowell, G. (2020). Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 25(10). doi: 10.2807/1560-7917.ES.2020.25.10.2000180.
Munoz, M., and Covenas, R. (2014). Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 46(7), 1727-1750. doi: 10.1007/s00726-014-1736-9.
Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M.V., McGroder, C., Stevens, J.S., et al. (2021). Post-acute COVID-19 syndrome. Nat Med. doi: 10.1038/s41591-021-01283-z.
Pasin, L., Navalesi, P., Zangrillo, A., Kuzovlev, A., Likhvantsev, V., Hajjar, L.A., et al. (2021). Corticosteroids for Patients With Coronavirus Disease 2019 (COVID-19) With Different Disease Severity: A Meta-Analysis of Randomized Clinical Trials. J Cardiothorac Vasc Anesth 35(2), 578-584. doi: 10.1053/j.jvca.2020.11.057.
Perez-Gomez, A., Vitalle, J., Gasca-Capote, M.C., Gutierrez-Valencia, A., Trujillo-Rodriguez, M., Serna-Gallego, A., et al. (2021). Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. bioRxiv, 2021.2003.2018.436001. doi: 10.1101/2021.03.18.436001.
Peti-Peterdi, J., and Harris, R.C. (2010). Macula densa sensing and signaling mechanisms of renin release. J Am Soc Nephrol 21(7), 1093-1096. doi: 10.1681/ASN.2009070759.
Potempa, L.A., Rajab, I.M., Hart, P.C., Bordon, J., and Fernandez-Botran, R. (2020). Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am J Trop Med Hyg. doi: 10.4269/ajtmh.20-0473.
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., et al. (2020). Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 71(15), 762-768. doi: 10.1093/cid/ciaa248.
Recovery_Collaborative_Group, Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell, J.L., et al. (2020). Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N Engl J Med. doi: 10.1056/NEJMoa2021436.
Recovery_Collaborative_Group, Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell, J.L., et al. (2021). Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med 384(8), 693-704. doi: 10.1056/NEJMoa2021436.
Ridker, P.M., Danielson, E., Fonseca, F.A., Genest, J., Gotto, A.M., Jr., Kastelein, J.J., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359(21), 2195-2207. doi: 10.1056/NEJMoa0807646.
Ritchie, A.I., and Singanayagam, A. (2020). Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet 395(10230), 1111. doi: 10.1016/S0140-6736(20)30691-7.
Ruuskanen, O., Lahti, E., Jennings, L.C., and Murdoch, D.R. (2011). Viral pneumonia. Lancet 377(9773), 1264-1275. doi: 10.1016/S0140-6736(10)61459-6.
Ryan, E.P., Pollock, S.J., Murant, T.I., Bernstein, S.H., Felgar, R.E., and Phipps, R.P. (2005). Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production. J Immunol 174(5), 2619-2626. doi: 10.4049/jimmunol.174.5.2619.
Schulte-Schrepping, J., Reusch, N., Paclik, D., Bassler, K., Schlickeiser, S., Zhang, B., et al. (2020). Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 182(6), 1419-1440 e1423. doi: 10.1016/j.cell.2020.08.001.
Sharma, S.K., Gupta, A., Biswas, A., Sharma, A., Malhotra, A., Prasad, K.T., et al. (2016). Aetiology, outcomes & predictors of mortality in acute respiratory distress syndrome from a tertiary care centre in north India. Indian J Med Res 143(6), 782-792. doi: 10.4103/0971-5916.192063.
Shoaibi, A., Fortin, S., Weinstein, R., Berlin, J., and Ryan, P. (2021). Comparative Effectiveness of Famotidine in Hospitalized COVID-19 Patients short title: Famotidine and risk of COVID-19 outcomes (In Press) American Journal of Gastroenterology.
Singanayagam, A., Glanville, N., Girkin, J.L., Ching, Y.M., Marcellini, A., Porter, J.D., et al. (2018). Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat Commun 9(1), 2229. doi: 10.1038/s41467-018-04574-1.
Su, Y., Yuan, D., Chen, D.G., Wang, K., Choi, J., Dai, C.L., et al. (2021). Heterogeneous immunological recovery trajectories revealed in post-acute COVID-19. medRxiv, 2021.2003.2019.21254004. doi: 10.1101/2021.03.19.21254004.
Sun, S., Chen, Y., Hu, L., Wu, Y., Liang, M., Ahmed, M., et al. (2021). Does Famotidine reduce the risk of progression to severe disease, death, and intubation for COVID-19 patients? A systemic review and meta-analysis. (E pub ahead of print) Digestive Diseases and Sciences. doi: 10.1007/s10620-021-06872-z.
Tang, N., Li, D., Wang, X., and Sun, Z. (2020a). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(4), 844-847. doi: 10.1111/jth.14768.
Tang, S., Sun, R., Xiao, Q., Mao, T., Ge, W., Huang, C., et al. (2020b). Proteomics Uncovers Immunosuppression in COVID-19 Patients with Long Disease Course. medRxiv, 2020.2006.2014.20131078. doi: 10.1101/2020.06.14.20131078.
Thomas, B.J., Porritt, R.A., Hertzog, P.J., Bardin, P.G., and Tate, M.D. (2014). Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Sci Rep 4, 7176. doi: 10.1038/srep07176.
Tian, S., Hu, N., Lou, J., Chen, K., Kang, X., Xiang, Z., et al. (2020). Characteristics of COVID-19 infection in Beijing. J Infect 80(4), 401-406. doi: 10.1016/j.jinf.2020.02.018.
Tomera, K., and Kittah, J. (2020). Anosmia in COVID-19: Celecoxib Appears to Speed Recovery. Journal of Pharmacology, Pharmaceutics & Pharmacovigilance 4.
Tomera, K., Malone, R., and Kittah, J. (2020). Brief Report: Rapid Clinical Recovery from Severe COVID-19 with High Dose Famotidine and High Dose Celecoxib Adjuvant Therapy. Enliven: Pharmacovigilance and Drug Safety 6.
Tomera, K., Malone, R., and Kittah, J. (2021). Hospitalized COVID-19 Patients Treated With Celecoxib and High Dose Famotidine Adjuvant Therapy Show Significant Clinical Responses. (In Press) Frontiers in Pharmacology.
Vabret, N., Britton, G.J., Gruber, C., Hegde, S., Kim, J., Kuksin, M., et al. (2020). Immunology of COVID-19: Current State of the Science. Immunity 52(6), 910-941. doi: 10.1016/j.immuni.2020.05.002.
Wendel Garcia, P.D., Fumeaux, T., Guerci, P., Heuberger, D.M., Montomoli, J., Roche-Campo, F., et al. (2020). Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine, 100449. doi: https://doi.org/10.1016/j.eclinm.2020.100449.
Wong, J.J.M., Leong, J.Y., Lee, J.H., Albani, S., and Yeo, J.G. (2019). Insights into the immuno-pathogenesis of acute respiratory distress syndrome. Ann Transl Med 7(19), 504. doi: 10.21037/atm.2019.09.28.
Yan, X., Hao, Q., Mu, Y., Timani, K.A., Ye, L., Zhu, Y., et al. (2006). Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38(8), 1417-1428. doi: 10.1016/j.biocel.2006.02.003.
Zhang, L., Yan, X., Fan, Q., Liu, H., Liu, X., Liu, Z., et al. (2020). D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 18(6), 1324-1329. doi: 10.1111/jth.14859.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229), 1054-1062. doi: 10.1016/S0140-6736(20)30566-3.
Zhu, J., Ji, P., Pang, J., Zhong, Z., Li, H., He, C., et al. (2020). Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol 92(10), 1902-1914. doi: 10.1002/jmv.25884.