2.1 The Differential Quadrature Method with B-spline Basis Functions Algorithm
The differential quadrature method (DQM) is a numerical approach for solving nonlinear partial differential equations (PDEs), utilizing B-spline functions as the basis functions. The algorithm for implementing DQM with B-spline basis functions can be described as follows:
Step 1: Discretize the Domain Start by dividing the domain of the nonlinear PDE into a series of discrete points. Ideally, these points should be evenly spaced to facilitate easier computation.
Step 2: Select Basis Functions Choose suitable basis functions to represent the unknown function and its derivatives at the discrete points. This step is crucial for accurately capturing the underlying structure of the PDE.
Step 3: Approximate the Unknown Function Use a weighted sum of the function values at the discrete points to approximate the unknown function and its derivatives. In this method, the weighting coefficients are derived from exponential cubic B-spline basis functions.
Step 4: Derivative Calculation With the approximation from Step 3, calculate the derivatives of the unknown function at each discrete point.
Step 5: Construct a System of Equations Substitute the derived derivatives into the original PDE, transforming it into a system of ordinary differential equations (ODEs). This transformation facilitates easier solution of the nonlinear PDE.
Step 6: Solve the System of Equations Finally, solve the resulting system of algebraic equations to find the values of the unknown function at the discrete points.
This algorithm streamlines the process of solving complex nonlinear PDEs using DQM with B-spline basis functions. By following these steps, you can accurately approximate and evaluate the derivatives and ultimately solve the system of equations to obtain reliable solutions.
2.2 Exponential modified cubic B-spline differential quadrature method
DQM is a numerical method for approximating the function derivative as a linear sum of the function value at the discrete node points inside the problem’s solution space. This technique takes into consideration the grid distribution, where a given interval \(\:\left[a,b\right]\) is divided into a set of discrete grid points \(\:a={x}_{1}<{x}_{2}<\dots\:<{x}_{N}=b\).
If the function \(\:u\left(x\right)\) is sufficiently smooth within the region of the solution, the value of the derivatives at the discrete points \(\:{x}_{i}\:\)can be written in the form as follows:
$$\:\frac{{d}^{\left(r\right)}u}{d{x}^{\left(r\right)}}{\left.\right|}_{{x}_{i}}=\:{\sum\:}_{j=1}^{N}{p}_{i,j}^{\left(r\right)}u\left({x}_{j}\right),\:\:\:\:\:i=\text{1,2},\dots\:,N,\:\:\:\:r=\text{1,2},\dots\:,N-1$$
2.1
here \(\:r\) signifies the order of derivative, \(\:{p}_{i,j}^{\left(r\right)}\) are the weighing coefficients and \(\:N\) are the total points consider for approximation solution in the domain.
DQM aims to estimate weighting coefficients by using a set of basis functions that span the domain. To calculate these weighting coefficients, different types of basis functions can be used depending on the specific requirements of the problem.
This research employs the exponential form of B-spline in the third degree as the basis functions for calculating the weighting coefficients. The exponential cubic B-spline basis functions are defined as follows [31]:
$$\:{C}_{m}\left(x\right)=\frac{1}{{h}^{3}}\left\{\begin{array}{cc}{\alpha\:}_{3}\:\left({x}_{m-2}-x\right)-\frac{{\alpha\:}_{3}}{\lambda\:\left(\text{sinh}\left(\lambda\:\left({x}_{m-2}-x\right)\right)\right)},&\:x\in\:\left[{x}_{m-2},{x}_{m-1}\right)\\\:{\alpha\:}_{1}+{\alpha\:}_{2}\left({x}_{m}-x\right)+{\alpha\:}_{4}{e}^{\lambda\:\left({x}_{m}-x\right)}+{\delta\:}_{1}{e}^{-\lambda\:\left({x}_{m}-x\right)},&\:x\in\:\left[{x}_{m-1},{x}_{m}\right)\\\:{\alpha\:}_{1}+{\alpha\:}_{2}\left(x-{x}_{m}\right)+{\alpha\:}_{4}{e}^{\lambda\:\left(x-{x}_{m}\right)}+{\delta\:}_{1}{e}^{-\lambda\:\left(x-{x}_{m}\right)},&\:x\in\:\left[{x}_{m},{x}_{m+1}\right)\\\:{\alpha\:}_{3}\left(x-{x}_{m+2}\right)-\frac{{\alpha\:}_{3}}{\lambda\:\left(\text{sinh}\left(\lambda\:\left(x-{x}_{m+2}\right)\right)\right)},&\:x\in\:\left[{x}_{m+1},{x}_{m+2}\right)\end{array}\right.$$
2.2
$$\:\text{w}\text{h}\text{e}\text{r}\text{e}\:h={x}_{n}-{x}_{n-1}\:\text{f}\text{o}\text{r}\:\text{a}\text{l}\text{l}\:n.$$
$$\:{{\alpha\:}}_{1}=\frac{\lambda\:h{c}_{1}}{\lambda\:h{c}_{1}-{c}_{2}}\:,\:{{\alpha\:}}_{2}=\frac{\lambda\:}{2}\left(\begin{array}{c}\frac{{c}_{1}\left({c}_{1}-1\right)+{{c}_{2}}^{2}}{\left(\lambda\:h{c}_{1}-{c}_{2}\right)\left(1-{c}_{1}\right)}\end{array}\right),\:{{\alpha\:}}_{3}=\frac{\lambda\:}{2\left(\lambda\:h{c}_{1}-{c}_{2}\right)}\:,\:{{\alpha\:}}_{4}\:=\frac{1}{4}\left(\begin{array}{c}\frac{\left(1-{c}_{1}+{c}_{2}\right){e}^{-\lambda\:h}-{c}_{2}}{\left(\lambda\:h{c}_{1}-{c}_{2}\right)\left(1-{c}_{1}\right)}\end{array}\right),$$
$$\:{\delta\:}_{1}=\:\frac{1}{4}\left(\begin{array}{c}\frac{\left(-1+{c}_{1}+{c}_{2}\right){e}^{\lambda\:h}-{c}_{2}}{\left(\lambda\:h{c}_{1}-{c}_{2}\right)\left(1-{c}_{1}\right)}\end{array}\right),\:{c}_{1}=\text{cosh}\left(\lambda\:h\right),\:{c}_{2}=\text{sinh}\left(\lambda\:h\right).$$
The parameter \(\:(\lambda\:\)) need to be obtained for the minimum error, which is necessary for finding the solutions.
The numerical values of the exponential cubic B-spline functions \(\:{C}_{m}\left(x\right)\) and their derivatives at different nodal points can be obtained as follows:
$$\:{C}_{m}\left({x}_{m-1}\right)={C}_{m}\left({x}_{m+1}\right)=\frac{{c}_{2}-\lambda\:h}{2\left(\lambda\:h{c}_{1}-{c}_{2}\right)};\:{C}_{m}\left({x}_{m}\right)=1$$
$$\:{C}_{m}^{{\prime\:}}\left({x}_{m-1}\right)=\frac{\lambda\:\left({c}_{1}-1\right)}{2\left(\lambda\:h{c}_{1}-{c}_{2}\right)};{C}_{m}^{{\prime\:}}\left({x}_{m+1}\right)=\frac{\lambda\:\left(1-{c}_{1}\right)}{2\left(\lambda\:h{c}_{1}-{c}_{2}\right)};{C}_{m}^{{\prime\:}}\left({x}_{m}\right)=0$$
$$\:{C{\prime\:}}_{m}^{{\prime\:}}\left({x}_{m-1}\right)={C{\prime\:}}_{m}^{{\prime\:}}\left({x}_{m+1}\right)=\frac{{\lambda\:}^{2}{c}_{2}}{2\left(\lambda\:h{c}_{1}-{c}_{2}\right)};{C{\prime\:}}_{m}^{{\prime\:}}\left({x}_{m}\right)=\frac{{-\lambda\:}^{2}{c}_{2}}{\left(\lambda\:h{c}_{1}-{c}_{2}\right)}$$
When utilizing exponential cubic B-spline as the basis functions in the fundamental DQM Eq. (2.1), the resultant equation is as follows:
$$\:\frac{{\partial\:}^{\left(r\right)}{C}_{m}\left({x}_{i}\right)}{{\partial\:x}^{\left(r\right)}}={\sum\:}_{j=m-2}^{m+2}{p}_{i,j}^{\left(r\right)}{C}_{m}\left({x}_{j}\right),\:\:\:\:\:m=-\text{1,0},\dots\:,N+2,\:\:\:\:\:i=\text{1,2},\dots\:,N.\:\:$$
2.3
Utilizing exponential cubic B-spline leads to the appearance of two additional points on both the left and right sides, resulting in a total of four additional points. A modified form of the basis functions eliminates these extra points. The modified exponential cubic B-splines can be calculated as shown below at the mesh points [31]:
$$\:{G}_{1}\left(x\right)={C}_{1}\left(x\right)+2{C}_{0}\left(x\right),$$
$$\:{G}_{2}\left(x\right)={C}_{2}\left(x\right)-{C}_{0}\left(x\right),$$
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{G}_{k}\left(x\right)={C}_{k}\left(x\right)for\:\:\:k=\text{3,4},\dots\:,N-2,$$
2.4
$$\:{G}_{N-1}\left(x\right)={C}_{N-1}\left(x\right)-{C}_{N+1}\left(x\right),$$
$$\:{G}_{N}\left(x\right)={C}_{N}\left(x\right)+2{C}_{N+1}\left(x\right),$$
When r = 1 in Eq. (2.1), the resulting equation is:
$$\:{G}_{k}^{{\prime\:}}\left({x}_{i}\right)=\:{\sum\:}_{j=1}^{N}{p}_{i,j}^{\left(1\right)}{G}_{k}\left({x}_{j}\right),\:\:for\:\:\:\:i=\text{1,2},\dots\:,N,\:\:\:\:k=\text{1,2},\dots\:,N.$$
2.5
\(\:A{\overrightarrow{p}}^{\left(1\right)}\left[i\right]=\overrightarrow{T}\left[i\right]\) \(\:for\:\:\:\:i=\text{1,2},\dots\:,N.\) (2.6)
Using the specified MATLAB software, the proposed approach allows for the solution of this system and the determination of the weighting coefficient values. By substituting DQM-based approximations of spatial derivatives with exponential B-spline basis functions, which can convert the system into an ordinary differential equation (ODE). This resulting ODE can be solved using various numerical methods. In this work, the resultant ODE system has been numerically solved using a strong stability-preserving time-stepping Runge-Kutta (SSP-RK43) technique [41].
Once the optimal parameter value is determined using the LOOCV to minimize error, numerical solutions can be generated within predefined spatial domains and time intervals. This approach combines the reliability of DQM with exponential B-spline basis functions and the stability of the SSP-RK43 technique, providing accurate solutions for complex differential equations.
1) Remove the data point from the dataset.
2) Solve the differential equations using DQM with the updated dataset.
3) Compute the error between the numerical solution and the observed data.
5) Repeat steps (1)-(4) for all data points.