1 Hebert, P. D., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc Biol Sci270, 313-321, doi:10.1098/rspb.2002.2218 (2003).
2 Hollingsworth, P. M. et al. A DNA barcode for land plants. Proceedings of the National Academy of Sciences106, 12794-12797, doi:10.1073/pnas.0905845106 (2009).
3 Li, X. et al. Plant DNA barcoding: from gene to genome. Biological Reviews90, 157-166, doi:10.1111/brv.12104 (2015).
4 Fazekas, A. J., Kuzmina, M. L., Newmaster, S. G. & Hollingsworth, P. M. in DNA Barcodes: Methods and Protocols (eds W. John Kress & David L. Erickson) 223-252 (Humana Press, 2012).
5 Group, T. A. P. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society181, 1-20, doi:10.1111/boj.12385 (2016).
6 Sang, T. Utility of Low-Copy Nuclear Gene Sequences in Plant Phylogenetics. Critical Reviews in Biochemistry and Molecular Biology37, 121-147, doi:10.1080/10409230290771474 (2002).
7 Wortley, A. H., Rudall, P. J., Harris, D. J. & Scotland, R. W. How Much Data are Needed to Resolve a Difficult Phylogeny? Case Study in Lamiales. Systematic Biology54, 697-709, doi:10.1080/10635150500221028 (2005).
8 Escudero, M., Nieto Feliner, G., Pokorny, L., Spalink, D. & Viruel, J. Editorial: Phylogenomic Approaches to Deal With Particularly Challenging Plant Lineages. Frontiers in Plant Science11, doi:10.3389/fpls.2020.591762 (2020).
9 Funk, V. A. Systematics, evolution, and biogeography of Compositae. (International Association for Plant Taxonomy, 2009).
10 Daru, B. H., van der Bank, M., Bello, A. & Yessoufou, K. Testing the reliability of standard and complementary DNA barcodes for the monocot subfamily Alooideae from South Africa. Genome60, 337-347, doi:10.1139/gen-2015-0183 (2016).
11 Mankga, L. T., Yessoufou, K., Moteetee, A. M., Daru, B. H. & van der Bank, M. Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine. ZooKeys, 215-233, doi:10.3897/zookeys.365.5730 (2013).
12 Liu, J. et al. Multilocus DNA barcoding – Species Identification with Multilocus Data. Scientific Reports7, 16601, doi:10.1038/s41598-017-16920-2 (2017).
13 Pillon, Y. et al. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evolutionary Biology13, 35, doi:10.1186/1471-2148-13-35 (2013).
14 Novák, P. et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants6, 1325-1329, doi:10.1038/s41477-020-00785-x (2020).
15 Landis, J. B. et al. Impact of whole-genome duplication events on diversification rates in angiosperms. American Journal of Botany105, 348-363, doi:https://doi.org/10.1002/ajb2.1060 (2018).
16 Grover, C. E., Salmon, A. & Wendel, J. F. Targeted sequence capture as a powerful tool for evolutionary analysis1. American Journal of Botany99, 312-319, doi:10.3732/ajb.1100323 (2012).
17 Christmas, M. J., Biffin, E., Breed, M. F. & Lowe, A. J. Targeted capture to assess neutral genomic variation in the narrow-leaf hopbush across a continental biodiversity refugium. Scientific Reports7, 41367, doi:10.1038/srep41367 (2017).
18 Kim, K. W. et al. Respiratory viral co-infections among SARS-CoV-2 cases confirmed by virome capture sequencing. Scientific Reports11, 3934, doi:10.1038/s41598-021-83642-x (2021).
19 Rodney, A. R. et al. A domestic cat whole exome sequencing resource for trait discovery. Scientific Reports11, 7159, doi:10.1038/s41598-021-86200-7 (2021).
20 Widhelm, T. J. et al. Multiple historical processes obscure phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota). Scientific Reports9, 8968, doi:10.1038/s41598-019-45455-x (2019).
21 Weitemier, K. et al. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Applications in Plant Sciences2, 1400042, doi:10.3732/apps.1400042 (2014).
22 Manzanilla, V. et al. Tracking the global supply chain of herbal medicines with novel genomic DNA barcodes. bioRxiv, 744318, doi:10.1101/744318 (2019).
23 Hale, H., Gardner, E. M., Viruel, J., Pokorny, L. & Johnson, M. G. Strategies for reducing per-sample costs in target capture sequencing for phylogenomics and population genomics in plants. Applications in Plant Sciences8, e11337, doi:10.1002/aps3.11337 (2020).
24 Chung, J. et al. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing. Scientific Reports6, 26732, doi:10.1038/srep26732 (2016).
25 Brewer, G. E. et al. Factors Affecting Targeted Sequencing of 353 Nuclear Genes From Herbarium Specimens Spanning the Diversity of Angiosperms. Frontiers in Plant Science10, doi:10.3389/fpls.2019.01102 (2019).
26 Forrest, L. L. et al. The Limits of Hyb-Seq for Herbarium Specimens: Impact of Preservation Techniques. Frontiers in Ecology and Evolution7, doi:10.3389/fevo.2019.00439 (2019).
27 Hart, M. L., Forrest, L. L., Nicholls, J. A. & Kidner, C. A. Retrieval of hundreds of nuclear loci from herbarium specimens. TAXON65, 1081-1092, doi:10.12705/655.9 (2016).
28 Johnson, M. G. et al. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Systematic Biology68, 594-606, doi:10.1093/sysbio/syy086 (2018).
29 Folk, R. A. et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences116, 10874-10882, doi:10.1073/pnas.1817999116 (2019).
30 de La Harpe, M. et al. A dedicated target capture approach reveals variable genetic markers across micro- and macro-evolutionary time scales in palms. Molecular Ecology Resources19, 221-234, doi:10.1111/1755-0998.12945 (2019).
31 Soto Gomez, M. et al. A customized nuclear target enrichment approach for developing a phylogenomic baseline for Dioscorea yams (Dioscoreaceae). Applications in plant sciences7, e11254-e11254, doi:10.1002/aps3.11254 (2019).
32 Villaverde, T. et al. Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves relationships from populations to species and above. New Phytologist220, 636-650, doi:10.1111/nph.15312 (2018).
33 Carter, K. A. et al. Target Capture Sequencing Unravels Rubus Evolution. Frontiers in Plant Science10, doi:10.3389/fpls.2019.01615 (2019).
34 Larridon, I. et al. Tackling Rapid Radiations With Targeted Sequencing. Frontiers in Plant Science10, doi:10.3389/fpls.2019.01655 (2020).
35 Newton, L. E. in Monocotyledons (eds Urs Eggli & Reto Nyffeler) 485-696 (Springer Berlin Heidelberg, 2020).
36 Grace, O. M. et al. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera. BMC Evolutionary Biology15, 29, doi:10.1186/s12862-015-0291-7 (2015).
37 Zonneveld, B. J. M. Genome size analysis of selected species of Aloe (Aloaceae) reveals the most primitive species and results in some new combinations. Bradleya2002, 5-12, 18 (2002).
38 Grace, O. M. Current perspectives on the economic botany of the genus Aloe L. (Xanthorrhoeaceae). South African Journal of Botany77, 980-987, doi:https://doi.org/10.1016/j.sajb.2011.07.002 (2011).
39 Sajeva, M., Carimi, F. & McGough, N. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and its Role in Conservation of Cacti and Other Succulent Plants Functional Ecosystems and Communities1, 80-85 (2007).
40 Newton, D. J. & Chan, J. South Africa's trade in southern African succulent plants. (Traffic east/southern Africa, 1998).
41 Mahadani, P. & Ghosh, S. K. DNA Barcoding: A tool for species identification from herbal juices. DNA Barcodes1, 35-38, doi:10.2478/dna-2013-0002 (2013).
42 Pellicer, J. & Leitch, I. J. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist226, 301-305, doi:10.1111/nph.16261 (2020).
43 Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. J. Genome Size Diversity and Its Impact on the Evolution of Land Plants. Genes9, 88, doi:10.3390/genes9020088 (2018).
44 Brandham, P. E. & Doherty, M. J. Genome Size Variation in the Aloaceae, an Angiosperm Family Displaying Karyotypic Orthoselection. Annals of Botany82, 67-73, doi:https://doi.org/10.1006/anbo.1998.0742 (1998).
45 Dee, R., Malakasi, P., Rakotoarisoa, S. E. & Grace, O. M. A phylogenetic analysis of the genus Aloe (Asphodelaceae) in Madagascar and the Mascarene Islands. Botanical Journal of the Linnean Society187, 428-440, doi:10.1093/botlinnean/boy026 (2018).
46 Chamala, S. et al. MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes. Applications in plant sciences3, apps.1400115, doi:10.3732/apps.1400115 (2015).
47 Buddenhagen, C. et al. Anchored Phylogenomics of Angiosperms I: Assessing the Robustness of Phylogenetic Estimates. bioRxiv, 086298, doi:10.1101/086298 (2016).
48 Malakasi, P., Bellot, S., Dee, R. & Grace, O. M. Museomics Clarifies the Classification of Aloidendron (Asphodelaceae), the Iconic African Tree Aloes. Frontiers in plant science10, 1227-1227, doi:10.3389/fpls.2019.01227 (2019).
49 Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants5, 461-470, doi:10.1038/s41477-019-0421-0 (2019).
50 Dodsworth, S. et al. Hyb-Seq for Flowering Plant Systematics. Trends in Plant Science24, 887-891, doi:https://doi.org/10.1016/j.tplants.2019.07.011 (2019).
51 Grace, O. M., Simmonds, M. S. J., Smith, G. F. & van Wyk, A. E. Documented Utility and Biocultural Value of Aloe L. (Asphodelaceae): A Review. Economic Botany63, 167-178, doi:10.1007/s12231-009-9082-7 (2009).
52 Van Jaarsveld, E. Gasteria ASPHODELACEAE. Monocotyledons, 751-766 (2020).
53 GRACE, O. M. et al. A revised generic classification for Aloe (Xanthorrhoeaceae subfam. Asphodeloideae). 201376, 8, doi:10.11646/phytotaxa.76.1.2 (2013).
54 Staats, M. et al. Genomic Treasure Troves: Complete Genome Sequencing of Herbarium and Insect Museum Specimens. PLOS ONE8, e69189, doi:10.1371/journal.pone.0069189 (2013).
55 Staats, M. et al. DNA Damage in Plant Herbarium Tissue. PLOS ONE6, e28448, doi:10.1371/journal.pone.0028448 (2011).
56 Kleinkopf, J. A., Roberts, W. R., Wagner, W. L. & Roalson, E. H. Diversification of Hawaiian Cyrtandra (Gesneriaceae) under the influence of incomplete lineage sorting and hybridization. Journal of Systematics and Evolution57, 561-578, doi:10.1111/jse.12519 (2019).
57 Maddison, W. P. & Knowles, L. L. Inferring Phylogeny Despite Incomplete Lineage Sorting. Systematic Biology55, 21-30, doi:10.1080/10635150500354928 (2006).
58 Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics19, 153, doi:10.1186/s12859-018-2129-y (2018).
59 Manning, J., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. A Molecular Phylogeny and Generic Classification of Asphodelaceae subfamily Alooideae: A Final Resolution of the Prickly Issue of Polyphyly in the Alooids? Systematic Botany39, 55-74 (2014).
60 Andrews, S. (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2010).
61 Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics32, 3047-3048, doi:10.1093/bioinformatics/btw354 (2016).
62 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal; Vol 17, No 1: Next Generation Sequencing Data Analysis, doi:10.14806/ej.17.1.200 (2011).
63 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology29, 644-652, doi:10.1038/nbt.1883 (2011).
64 De Smet, R. et al. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proceedings of the National Academy of Sciences110, 2898-2903, doi:10.1073/pnas.1300127110 (2013).
65 Ouyang, S. et al. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Research35, D883-D887, doi:10.1093/nar/gkl976 (2006).
66 Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution30, 772-780, doi:10.1093/molbev/mst010 (2013).
67 Ren, J.-J. et al. The complete chloroplast genome of Aloe vera from China as a Chinese herb. Mitochondrial DNA Part B5, 1092-1093, doi:10.1080/23802359.2020.1726229 (2020).
68 Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Current Protocols in Bioinformatics5, 4.10.11-14.10.14, doi:10.1002/0471250953.bi0410s05 (2004).
69 Berger, A. in Das Pflanzenreich IV. 38. III, II. (ed H.G.A. Engler) 347 pp. (Engelmann, 1908).
70 Reynolds, G.-W. The Aloes of South Africa. (The Aloes of South Africa Book Fund, 1950).
71 Reynolds, G.-W. The Aloes of Tropical Africa and Madagascar. (Aloes Book Fund, 1966).
72 Doyle, J. J. & Doyle, J. L. Vol. 19 11-15 (Phytochemical Bulletin, 1987).
73 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England)30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).
74 Johnson, M. G. et al. HybPiper: Extracting Coding Sequence and Introns for Phylogenetics from High-Throughput Sequencing Reads Using Target Enrichment. Applications in Plant Sciences4 (2016).
75 Kück, P. & Meusemann, K. FASconCAT: Convenient handling of data matrices. Molecular phylogenetics and evolution56, 1115-1118, doi:10.1016/j.ympev.2010.04.024 (2010).
76 Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972-1973, doi:10.1093/bioinformatics/btp348 (2009).
77 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution32, 268-274, doi:10.1093/molbev/msu300 (2014).
78 R Core Development Team. (R Foundation for Statistical Computing, Vienna, Austria, 2020).
79 Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526-528, doi:10.1093/bioinformatics/bty633 (2018).
80 Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution3, 217-223, doi:https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).
81 Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics26, 1669-1670, doi:10.1093/bioinformatics/btq243 (2010).
82 Huson, D. H. & Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution23, 254-267, doi:10.1093/molbev/msj030 (2005).