1 Dhama, K. et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev 33, doi:10.1128/CMR.00028-20 (2020).
2 Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449, doi:10.1038/s41586-020-2548-6 (2020).
3 Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450-456, doi:10.1038/s41586-020-2571-7 (2020).
4 Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-119, doi:10.1038/s41586-020-2380-z (2020).
5 Cao, Y. et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-84 e16, doi:10.1016/j.cell.2020.05.025 (2020).
6 Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956-963, doi:10.1126/science.abc7520 (2020).
7 Chen, F., Liu, Z. & Jiang, F. Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Front Immunol 12, 690742, doi:10.3389/fimmu.2021.690742 (2021).
8 Huo, J. et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol 27, 846-854, doi:10.1038/s41594-020-0469-6 (2020).
9 Wrapp, D. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181, 1436-1441, doi:10.1016/j.cell.2020.05.047 (2020).
10 Schoof, M. et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370, 1473-1479, doi:10.1126/science.abe3255 (2020).
11 Koenig, P. A. et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science, doi:10.1126/science.abe6230 (2021).
12 Custodio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 11, 5588, doi:10.1038/s41467-020-19204-y (2020).
13 Xiang, Y. et al. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 370, 1479-1484, doi:10.1126/science.abe4747 (2020).
14 Hanke, L. et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 11, 4420, doi:10.1038/s41467-020-18174-5 (2020).
15 Xu, J. et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, doi:10.1038/s41586-021-03676-z (2021).
16 Valenzuela Nieto, G. et al. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 11, 3318, doi:10.1038/s41598-021-82833-w (2021).
17 Pymm, P. et al. Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2101918118 (2021).
18 Nambulli, S. et al. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv 7, doi:10.1126/sciadv.abh0319 (2021).
19 Cardoso, F. M. et al. Single-domain antibodies targeting neuraminidase protect against an H5N1 influenza virus challenge. J Virol 88, 8278-8296, doi:10.1128/JVI.03178-13 (2014).
20 Richard, G. et al. In vivo neutralization of alpha-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 8, e69495, doi:10.1371/journal.pone.0069495 (2013).
21 Rotman, M. et al. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nucl Med Biol 42, 695-702, doi:10.1016/j.nucmedbio.2015.03.003 (2015).
22 Els Conrath, K., Lauwereys, M., Wyns, L. & Muyldermans, S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276, 7346-7350, doi:10.1074/jbc.M007734200 (2001).
23 Detalle, L. et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob Agents Chemother 60, 6-13, doi:10.1128/AAC.01802-15 (2016).
24 Jan ter Meulen Edward N. van den Brink Leo L. M. Poon, W. E. M., Cynthia S. W. Leung Freek Cox, Chung Y. Cheung, Arjen Q. Bakker, Johannes A. Bogaards, Els van Deventer, Wolfgang Preiser, Hans Wilhelm Doerr, Vincent T. Chow4 John de Kruif, Joseph S. M. Peiris, Jaap Goudsmit. Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants. PLoS MEDICINE 3, e237 (2006).
25 Huo, J. et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol, doi:10.1038/s41594-020-0469-6 (2020).
26 Huo, J. et al. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe, doi:10.1016/j.chom.2020.06.010 (2020).
27 Yuan, M. et al. Structural basis of a shared antibody response to SARS-CoV-2. Science 369, 1119-1123, doi:10.1126/science.abd2321 (2020).
28 Kuan-Ying A. HuangI, T. K. T., Ting-Hua ChenI, Chung-Guei HuangI, Ruth Harvey, Saira Hussain, Cheng-Pin ChenI, Adam HardingI, Javier Gilbert- JaramilloI, Xu LiuI, Michael KnightI, Lisa SchimanskiI, Shin-Ru ShihI, Yi- Chun Lin, Chien-Yu ChengI, Shu-Hsing ChengI, Yhu-Chering Huang, Tzou-Yien ,LinI Jia-Tsrong Jan, Che Ma, William JamesI, Rodney S. DanielsI, John W. McCauleyI, Pramila RijalI, Alain R. Townsend. Breadth and function of antibody response to acute SARS-CoV-2 infection in humans. Plos pathogens 17, e1009352 (2021).
29 Zhou, D. et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat Struct Mol Biol 27, 950-958, doi:10.1038/s41594-020-0480-y (2020).
30 Daming Zhou, W. D., Piyada Supasa, Chang Liu, Alexander J. Mentzer, Helen M. Ginn, Yuguang Zhao, Helen M.E. Duyvesteyn, Aekkachai Tuekprakhon, Rungtiwa Nutalai, Beibei Wang, Guido C. Paesen, Cesar Lopez- Camacho, Jose Slon-Campos, Bassam Hallis, Naomi Coombes, Kevin Bewley, Sue Charlton, Thomas S. Walter, Donal Skelly, Sheila F. Lumley, Christina Dold, Robert Levin, Tao Dong, Andrew J. Pollard, Julian C. Knight, Derrick Crook, Teresa Lambe, Elizabeth Clutterbuck, Sagida Bibi, Amy Flaxman, Mustapha Bittaye, Sandra Belij- Rammerstorfer, Sarah Gilbert, William James, Miles W. Carroll, Paul Klenerman, Eleanor Barnes, Susanna J. Dunachie, Elizabeth E. Fry, Juthathip Mongkolspaya, Jingshan Ren, David I. Stuart, Gavin R. Screaton. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine induced sera. Cell, doi:https://doi.org/10.1016/j.cell.2021.02.037 (2021).
31 Piyada Supasa, D. Z., Wanwisa Dejnirattisai, Chang Liu, Alexander J. Mentzer, Helen M. Ginn, Yuguang Zhao, Helen M.E. Duyvesteyn, Rungtiwa Nutalai, Aekkachai Tuekprakhon, Beibei Wang, Guido C. Paesen, Jose Slon-Campos, César López-Camacho, Bassam Hallis, Naomi Coombes, Kevin Bewley, Sue Charlton, Thomas S. Walter, Eleanor Barnes, Susanna J. Dunachie, Donal Skelly, Sheila F. Lumley, Natalie Baker, Imam Shaik, Holly Humphries, Kerry Godwin, Nick Gent, Alex Sienkiewicz, Christina Dold, Robert Levin, Tao Dong, Andrew J. Pollard, Julian C. Knight, Paul Klenerman, Derrick Crook, Teresa Lambe, Elizabeth Clutterbuck, Sagida Bibi, Amy Flaxman, Mustapha Bittaye, Sandra Belij-Rammerstorfer, Sarah Gilbert, David R. Hall, Mark A. Williams, Neil G. Paterson, William James, Miles W. Carroll, Elizabeth E. Fry, Juthathip Mongkolsapaya, Jingshan Ren, David I. Stuart, Gavin R. Screaton. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, doi:https://doi.org/10.1016/j.cell.2021.02.033 (2021).
32 Luan, B., Wang, H. & Huynh, T. Enhanced binding of the N501Y-mutated SARS-CoV-2 spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Lett 595, 1454-1461, doi:10.1002/1873-3468.14076 (2021).
33 Greaney, A. J. et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29, 44-57 e49, doi:10.1016/j.chom.2020.11.007 (2021).
34 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263, doi:10.1126/science.abb2507 (2020).
35 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).
36 Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 27, 763-767, doi:10.1038/s41594-020-0468-7 (2020).
37 He, L. et al. Enhanced Ability of Oligomeric Nanobodies Targeting MERS Coronavirus Receptor-Binding Domain. Viruses 11, doi:10.3390/v11020166 (2019).
38 Hultberg, A. et al. Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLoS One 6, e17665, doi:10.1371/journal.pone.0017665 (2011).
39 Koenig, P. A. et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 371, doi:10.1126/science.abe6230 (2021).
40 Kondo, T. et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci Adv 6, doi:10.1126/sciadv.abd3916 (2020).
41 Chan, J. F. et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin Infect Dis 71, 2428-2446, doi:10.1093/cid/ciaa325 (2020).
42 Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
43 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).
44 Roberts, A. et al. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 79, 503-511, doi:10.1128/JVI.79.1.503-511.2005 (2005).
45 Zhao, G. et al. A Novel Nanobody Targeting Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Receptor-Binding Domain Has Potent Cross-Neutralizing Activity and Protective Efficacy against MERS-CoV. J Virol 92, doi:10.1128/JVI.00837-18 (2018).
46 Liang, W., Pan, H. W., Vllasaliu, D. & Lam, J. K. W. Pulmonary Delivery of Biological Drugs. Pharmaceutics 12, doi:10.3390/pharmaceutics12111025 (2020).
47 Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630-633, doi:10.1126/science.abb7269 (2020).
48 Wrapp, D. et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 181, 1004-1015 e1015, doi:10.1016/j.cell.2020.04.031 (2020).
49 Van Heeke, G. et al. Nanobodies(R) as inhaled biotherapeutics for lung diseases. Pharmacol Ther 169, 47-56, doi:10.1016/j.pharmthera.2016.06.012 (2017).
50 Esparza, T. J., Martin, N. P., Anderson, G. P., Goldman, E. R. & Brody, D. L. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 10, 22370, doi:10.1038/s41598-020-79036-0 (2020).
51 Nettleship, J. E., Rahman-Huq, N. & Owens, R. J. The production of glycoproteins by transient expression in Mammalian cells. Methods Mol Biol 498, 245-263, doi:10.1007/978-1-59745-196-3_16 (2009).
52 Bird, L. E. et al. Application of In-Fusion cloning for the parallel construction of E. coli expression vectors. Methods Mol Biol 1116, 209-234, doi:10.1007/978-1-62703-764-8_15 (2014).
53 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132, doi:10.1107/S0907444904019158 (2004).
54 Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861-877, doi:10.1107/S2059798319011471 (2019).
55 Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315, doi:10.1002/pro.3330 (2018).
56 Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 74, 814-840, doi:10.1107/S2059798318009324 (2018).
57 Bewley, K. R. et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc, doi:10.1038/s41596-021-00536-y (2021).
58 Wolfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465-469, doi:10.1038/s41586-020-2196-x (2020).
59 Patterson, E. I. et al. Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays. J. Infect. Dis. 222, 1462-1467, doi:10.1093/infdis/jiaa507 (2020).