Adhami, M. Sadeghi, S, H. Duttmann, R. Sheikhmohammady, M. (2020). Best soil comanagement practices for two watersheds in Germany and Iran using game theory-based approaches. Science of The Total Environment. 698. 134265. https://doi.org/10.1016/j.scitotenv.2019.134265.
Aerts, J. C., Eisinger, E., Heuvelink, G., Stewart, T. J. (2003). Using linear integer programming for multi-site land-use allocation. Geographical Analysis, 35, 148–169. https://doi.org/10.1111/j.1538-4632.2003.tb01106.x.
Arthur, J. L., Nalle, D. J. (1997). Clarification on the use of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 11, 397–402. https://doi.org/10.1080/136588197242338.
Asadollahi, Z., SalmanMahiny, A. (2017). Assessing the Impact of Land Use Change on Ecosystem Services Supply (Carbon Storage and Sequestration). Environmental Reserches. 15, 203-214. https://dorl.net/dor/20.1001.1.20089597.1396.8.15.24.0.
Aumann, R.J. (1985). What is game theory trying to accomplish? In: Arrow, K., Honkapohja, S. (Eds.), Frontiers of Economics. Basil Blackwell, Oxford. https://doi.org/10.4236/ns.2010.23033.
Bahadori, B. Harbor, J. Engel, B. and Grove, M. (2000). Assessing Water-Scale, Long-Term Hydrologic Impacts of Land-use change Using a GIS-NPS Model. Journal Environment Management. (26): 643-658. https://doi.org/10.1002/j.1551-8833.1997.tb08325.x.
Batty, M. (2018). Artificial Intelligence and Smart Cities. SAGE Publications Sage UK, London, England.
Bočková, K.H., Sláviková, G., Gabrhel, J. (2015). Game theory as a tool of project management. Procedia – Social Behav. Sci. 213, 709–715. http://dx.doi.org/10.1016/j. sbspro.2015.11.491.
Camerer, C.F. (1997). Progress in behavioral game theory. J. Econ. Perspect. 11 (4), 167–188. http://dx.doi.org/10.1257/jep.11.4.167.
Census Yearbook of Golestan Province. (2013). A. S. Mhiny. 1-200.
Cao, K., Batty, M., Huang, B., Liu, Y., Yu, L., Chen, J. (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. Int. J. Geogr. Inf. Sci. 25, 1949–1969. https://doi.org/10.1080/13658816.2011.570269.
Carraro, C., Marchiori, C., Sgobbi, A. (2007). Negotiating on water: insights from noncooperative bargaining theory. Environ. Dev. Econ. 12 (2), 329–349. http://dx.doi.org/10.1017/S1355770X06003536.
Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection and food security. Catena, 69, 1–15. https://doi.org/10.1016/j.catena.2006.04.019.
Chuvieco, E. (1993). Integration of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 7, 71–83. https://doi.org/10.1080/02693799308901940.
Chuvieco, E. (2004). Integration of linear programming and GIS for Land-Use Modelling. International Journal of Geographical Information System 7(1): 71-83.
Collins, B, C. Kumral, M. (2020). Game theory for analyzing and improving environmental management in the mining industry. Resources Policy. 69. 101860. https://doi.org/10.1016/j.resourpol.2020.101860.
Drobne, S. Lisec, A. (2009). Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging, Informatica, 33(4): 459-474.
Ducourtieux, O. Laffort, J.R. and Sacklokham, S. (2005). Land policy and farming practices in Laos. Dev. Change. 36: 499-526. https://doi.org/10.1111/j.0012-155X.2005.00421.x.
Engle, B. A. Choi, J, Y. Harbor, J. and Pandey, S. (2003). Web-based DSS for hydrologic impact evaluation of small watershed land use changes. Computers and electronics in agriculture. (39): 241-249. http://dx.doi.org/10.1016/S0168-1699(03)00078-4.
Gu, Y. Lord, A. Eika, A. Dethier, P. Samsura, D, A, A. Nordahi, B, I. Sommervoll, D, E. Krabben, E. Halleux, J. (2021). Fair shares? Advancing land economics through cooperative game theory. Land Use Policy. 106. 105400. https://doi.org/10.1016/j.landusepol.2021.105400.
Guoxin, T., Shibasaki, R., Matsumura, K. (2004). Development of a GIS-based decision support system for assessing land use status. Geo-Spatial Inf. Sci. 7, 72–78. https://doi.org/10.1007/BF02826679.
Hasti, F. SalmanMahiny, A. Jolaei, R. Aghili, S, M. (2016). Game Theory, a useful approach for resolving land use planning. Journal Environment and development. (12): 43-54. (In Persian with English abstract).
Hasti, F. Rouhi, H. Khodakarami, L. Mahiny, A. S. (2016). Zoning the protected area of Shahoo/Kosalan using RS and GIS. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT). 10: 8. 74-81. http://dx.doi.org/10.9790/2402-1008017481 .
Homayounfar, M., Ganji, A., Khalili, D., Mousavi, A.A. (2010). A model for reservoir operation based on the game theory. Iran-water Resour. Res. 6 (2), 14–26 (In Persian with English abstract).
Hui, E., Bao, H. (2013). The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory. Land Use Policy, 30, 373–380. http://dx.doi.org/10.1016/j.landusepol.2012.04.001.
Ikonen. P. Rantala, M. Miettinen, J. Kuittinen, S. Hujala, T. Mehtätalo, L. Pappinen, A. (2020). Grounds for improving the implementation of game-oriented forest management – A double sampling survey of Finnish forest owners and professionals. Forest Policy and Economics. 119. 102266. https://doi.org/10.1016/j.forpol.2020.102266.
Jana, A. Basu, R. Mukherijee, C. (2020). A game theoretic approach to optimize multi-stakeholder utilities for land acquisition negotiations with informality. Socio-Economic Planning Sciences. 69. 100717. https://doi.org/10.1016/j.seps.2019.06.002.
Kaiser, E.J., Godschalk, D.R., Chapin, F.S. (1995). Urban Land Use Planning. University of Illinois Press, Urbana, IL.
Lee, C.S., Chang, S.P. (2005). Interactive fuzzy optimization for an economic and environmental balance in a river system. Water Res. 39 (1), 221–231. http://dx.doi.org/10.1016/j.watres.2004.09.013.
Lee, C.S. (2012). Multi-objective game-theory models for conflict analysis in reservoir watershed management. Chemosphere 87 (6), 608–613. http://dx.doi.org/10.1016/j.chemosphere.2012.01.014.
Li, X., Yeh, A. G.-O. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14, 131–152. https://doi.org/10.1080/136588100240886.
Li, X., & Yeh, A. G.-O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16, 323–343. https://doi.org/10.1080/13658810210137004.
Li, X., Shi, X., He, J., & Liu, X. (2011). Coupling simulation and optimization to solve planning problems in a fast-developing area. Annals of the Association of American Geographers, 101, 1032–1048. https://doi.org/10.1080/00045608.2011.577366.
Ligmann‐Zielinska, A., Church, R.L., Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective land‐use allocation. Int. J. Geogr.Inf. Sci. 22, 601–622. https://doi.org/10.1080/13658810701587495.
Liu, X., Li, X., Shi, X., Huang, K., Liu, Y. (2012). A multi-type ant colony optimization (MACO) method for optimal land use allocation in large areas. International Journal of Geographical Information Science, 26, 1325–1343. https://doi.org/10.1080/13658816.2011.635594.
Liu, Y., Wang, L. Long, H. (2008). Spatio-temporal analysis of land-use conversion in the eastern coastal China during 1996–2005. Journal of Geographical Sciences, 18, 274–282. https://doi.org/10.1007/s11442-008-0274-3.
Liu, Y., Liu, D., Liu, Y., He, J., Jiao, L., Chen, Y. (2012). Rural land use spatial allocation in the semiarid loess hilly area in China: Using a particle swarm optimization model equipped with multi-objective optimization techniques. Science China Earth Sciences, 55, 1166–1177. https://doi.org/10.1007/s11430-011-4347-2.
Liu, Y., Wang, H., Ji, Y., Liu, Z., & Zhao, X. (2012). Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm: A case study from Yicheng, China. International Journal of Environmental Research and Public Health, 9, 2801–2826. https://doi.org/10.3390/ijerph9082801.
Liu, Y. Tang, W. He, J. Liu, Y. Ai, T. Liu, D. (2015). A land-use spatial optimization model based on genetic optimization and game theory. Computers, Environment and Urban Systems. 49(1-14). http://dx.doi.org/10.1016/j.compenvurbsys.2014.09.002.
Liu, Y. Hu, Y. Hu, Y. Gao, Y. Liu, Zh. (2021). Water quality characteristics and assessment of Yongding New River by improved comprehensive water quality identification index based on game theory. Journal of Environmental Sciences. 104. 40-52. https://doi.org/10.1016/j.jes.2020.10.021.
Lund, J.R., Palmer, R.N. (1997). Water resource system modeling for conflict resolution? Water Resour. 3 (108), 70–82.
Ma, Y. (2004). L-THIA: A useful hydrologic impact assessment model. Journal Nature and Sciences. (2): 68-73.
Maleki, J. Masoumi, Z. Hakimpour, F. coello ,C , A. (2020). A spatial land-use planning support system based on game theory. Land Use Policy. 99, 105013. https://doi.org/10.1016/j.landusepol.2020.105013
Mazandaran Zadeh, H., Ghaheri, A., Abdoli, G. (2010). A conflict resolution model among municipal and agricultural users by game theory for sustainable operation of a common aquifer. Eqtesad-E Keshavarzi Va Towse'e 17 (4), 77–102 (In Persian with English abstract).
Mohammadi Limaei, S. (2006). Economically Optimal Values and Decisions in Iranian Forest Management, Doctoral Thesis. Swedish University of Agricultural Sciences, Umea, Sweden (No 2006: 91). http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-1245.
Mohammadi Limaei, S. (2007). A game theory approach to the sawn wood and pulpwood markets in the north of Iran. Caspian J. Environ. Sci. 5 (1), 1–10.
Mohammadi Limaei, S. (2010). Mixed strategy game theory, application in forest industry. For. Policy Econom. 12 (7), 527–531. http://dx.doi.org/10.1016/j.forpol.2010.06.009.
Mohammadifar, A. Gholami, H. Comino, J, R. Collins, A, L. (2021). Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory. CATENA. 200. 105178. https://doi.org/10.1016/j.catena.2021.105178.
Moradi, S. Mohammadi Limaei, S. (2018). Multi-objective game theory model and fuzzy programing approach for sustainable watershed management. Land Use Policy. 71. 363-371. https://doi.org/10.1016/j.landusepol.2017.12.008.
Myerson, R.B. (1992). On the value of game theory in social science. Ration. Soc. 4, 62–73. https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Frss.sagepub.com%2Fcontent%2F4%2F1%2F62.abstract;h=repec:sae:ratsoc:v:4:y:1992:i:1:p:62-73.
Nazari, S. Ahmadi, A. Kamrani Rad, S. Ebrahimi, B. (2020). Application of non-cooperative dynamic game theory for groundwater conflict resolution. Journal of Environmental Management. 270. 110889. https://doi.org/10.1016/j.jenvman.2020.110889.
Nikkami, D. Elektorowicz, M. Mehuys, G. R. (2002). Optimizing the management of soil erosion. Journal Water Qual. Res. J. Can. 37: 3. 577-586
Ozsari, S. Uguz, H. Hakli, H. (2021). Implementation of meta-heuristic optimization algorithms for interview problem in land consolidation: A case study in Konya/Turkey. Land Use Policy. 108. 105511. https://doi.org/10.1016/j.landusepol.2021.105511.
Pfaff, A.S.P. Sanchez-Azofeifa, G.A. (2004). deforestation pressure and biological reserve planning: a conceptual approach and an illustrative application for Costa Rica. Resour. Energy Econ. 26: 237-254. http:// doi:10.1016/j.reseneeco.2003.11.009.
Parrachino, I., Dinar, A., Patrone, F. (2006)a. Cooperative Game Theory and Its Application to Natural, Environmental, and Water Resource Issues: 3. Application to Water Resources. pp. 4074 (World Bank Policy Research Working Paper No. 4074, WPS4074, Washington, DC). http://hdl.handle.net/10986/8848.
Parrachino, I., Zara, S., Patrone, F. (2006)b. Cooperative Game Theory and Its Application to Natural, Environmental, and Water Resource Issues: 1. Basic Theory. (World Bank Policy Research Working Paper No. 4072, WPS4072, Washington, DC).
Pourzand, F., Zibaei, M. (2010). Application of game theory for the optimal groundwater extraction in Firozabad plain. J. Agric. Econ. 5 (4), 1–24 (In Persian with English abstract). http://www.iranianjae.ir/article_9484_en.html.
Rasmusen, E. (2001). Games and information: An introduction to game theory. Wiley- Blackwell.
Riedel, C. (2003). Optimizing Land Use Planning for Mountainous Regions using LP and GIS towards Sustainability. Journal of Soil Conservation. USA, 34(1): 121-124.
Rodrigues, A., Koeppl, H., Ohtsuki, H., Satake, A. (2009). A game theoretical model of deforestation in human–environment relationships. J. Theor. Biol. 258 (1), 127–134. http://dx.doi.org/10.1016/j.jtbi.2009.01.005.
Raquel, S., Szidarovszky, F., Coppola Jr., E., Rajano, A. (2007). Application of game theory for a groundwater conflict in Mexico. J. Environ. Manage. 84 (4), 560 571.http://dx.doi.org/10.1016/j.jenvman.2006.07.011.
Sadeghi, S. Jalili, K. Nikkami, D. (2009). Land use optimization in watershed scale. Land Use Policy, 26, 186–193. https://doi.org/10.1016/j.landusepol.2008.02.007.
Shabani, M. (2010). Effect of optimizing land use on eroion and benefit of watershed: the case study of Zakhard watershed in Fars province. Iran. J. Natur. Geog. 8: 83-98.
Shahi, Ch., Kant, Sh. (2007). An evolutionary game-theoretic approach to the strategies of community members under Joint Forest Management regime. For. Policy Econ. 9 (7), 763–775. http://dx.doi.org/10.1016/j.forpol.2006.04.002.
Samsura, D.; Ary A.; Van der krabben, E. & Van Deemen, A.M.A. (2010). A game theory approach to the analysis of land and property development processes. Land Use Policy 27 (2010) 564–578. https://doi.org/10.1016/j.landusepol.2009.07.012.
Shields, D.J., Tolwinski, B., Kent, B.M. (1999). Models for conflict resolution in ecosystem management. Socio-Econ. Plann. Sci. 33 (1), 61–84. http://dx.doi.org/10.1016/S0038-0121(98)00003-2.
Sobuhi, M., Mojarad, E. (2010). Application of game theory for groundwater resources management of atrak. J. Econ. Agric. Dev. 24 (1), 1–12 (In Persian with English abstract). https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=195240.
Song, M., Chen, D. (2018). An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-Spatial Inf. Sci. 21, 273–287. https://doi.org/10.1080/10095020.2018.1489576.
Tang, D. Liu, H. Song, E. Chang, Sh. (2020). Urban expansion simulation from the perspective of land acquisition-based on bargaining model and ant colony optimization. Computers, Environment and Urban Systems. 82. 101504. https://doi.org/10.1016/j.compenvurbsys.2020.101504.
Üçler, N., Onkal Engin, G., Köçken, H.G., Öncel, M.S. (2015). Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir. Environ. Sci. Pollut. Res. 22 (9), 6546–6558. http://dx.doi.org/10.1007/s11356-015-4181-8.
Weng. Q. (2001). Modeling Urban Growth Effects on Surface Runoff with the Integration of Remote Sensing and GIS. Journal Environment Management. (28): 737-748. http://dx.doi.org/10.1007/s002670010258.
Wu, Y., Wu, C., & Shen, L. (2005). Modeling the decision-making using game theory in monitoring land-use practice in China. Systems Engineering – Theory & Practice, 9, 65–70. http://hdl.handle.net/10397/33223.
Wu, X., Grubesic, T. H. (2010). Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. Journal of Geographical Systems, 12, 409–433. https://doi.org/10.1007/s10109-010-0107-7.
Yazdian, M. Rakhshandehroo, Gh. Nikoo, M, R. Ghorbani Mooselu, M. Gandomi, A, H. Honar, T. (2021). Groundwater sustainability: Developing a non-cooperative optimal management scenario in shared groundwater resources under water bankruptcy conditions. Journal of Environmental Management. 292. 112807. https://doi.org/10.1016/j.jenvman.2021.112807.
Ye, Ch, Chen, L. Zhou, J. (2021). Evaluation model of forest eco economic benefits based on discrete particle swarm optimization. Environmental Technology & Innovation. 22. 101426. https://doi.org/10.1016/j.eti.2021.101426.
Zhang, W. (2004). Game theory and information economics. Shanghai People’s publishing House.
Zhang, Y., Li, A. Fung, T. (2012). Using GIS and multi-criteria decision analysis for conflict resolution in land use planning. Procedia Environmental Sciences, 13, 2264–2273. https://cyberleninka.org/article/n/458151.