1. Ryu, C.S., K. Klein, and U.M. Zanger, Membrane Associated Progesterone Receptors: Promiscuous Proteins with Pleiotropic Functions - Focus on Interactions with Cytochromes P450. Front Pharmacol, 2017. 8: p. 159.
2. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014. 13(2): p. 397-406.
3. Sabbir, M.G., Progesterone induced Warburg effect in HEK293 cells is associated with post-translational modifications and proteasomal degradation of progesterone receptor membrane component 1. J Steroid Biochem Mol Biol, 2019. 191: p. 105376.
4. Mir, S.U., et al., Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy. Autophagy, 2013. 9(10): p. 1566-78.
5. Peluso, J.J., et al., Progesterone receptor membrane component-1 (PGRMC1) and PGRMC-2 interact to suppress entry into the cell cycle in spontaneously immortalized rat granulosa cells. Biol Reprod, 2014. 91(5): p. 104.
6. Peluso, J.J., et al., Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. J Clin Endocrinol Metab, 2008. 93(5): p. 1592-9.
7. Peluso, J.J., et al., Progesterone receptor membrane component 1 and 2 regulate granulosa cell mitosis and survival through a NFKappaB-dependent mechanismdagger. Biol Reprod, 2019. 100(6): p. 1571-1580.
8. Clark, N.C., et al., Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors. Cancer Biol Ther, 2016. 17(3): p. 262-71.
9. Sueldo, C., X. Liu, and J.J. Peluso, Progestin and AdipoQ Receptor 7, Progesterone Membrane Receptor Component 1 (PGRMC1), and PGRMC2 and Their Role in Regulating Progesterone's Ability to Suppress Human Granulosa/Luteal Cells from Entering into the Cell Cycle. Biol Reprod, 2015. 93(3): p. 63.
10. Hughes, A.L., et al., Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab, 2007. 5(2): p. 143-9.
11. Ahmed, I.S., C. Chamberlain, and R.J. Craven, S2R(Pgrmc1): the cytochrome-related sigma-2 receptor that regulates lipid and drug metabolism and hormone signaling. Expert Opin Drug Metab Toxicol, 2012. 8(3): p. 361-70.
12. Li, X., et al., Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest, 2016. 126(1): p. 389-401.
13. Piel, R.B., 3rd, et al., A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry, 2016. 55(37): p. 5204-17.
14. Mansouri, M.R., et al., Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet, 2008. 17(23): p. 3776-83.
15. Guo, M., et al., Progesterone Receptor Membrane Component 1 Mediates Progesterone-Induced Suppression of Oocyte Meiotic Prophase I and Primordial Folliculogenesis. Sci Rep, 2016. 6: p. 36869.
16. Luciano, A.M., et al., Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction, 2010. 140(5): p. 663-72.
17. Izzo, N.J., et al., Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity. PLoS One, 2014. 9(11): p. e111899.
18. Kim, J.Y., et al., Progesterone Receptor Membrane Component 1 suppresses the p53 and Wnt/beta-catenin pathways to promote human pluripotent stem cell self-renewal. Sci Rep, 2018. 8(1): p. 3048.
19. Shih, C.C., et al., Role of PGRMC1 in cell physiology of cervical cancer. Life Sci, 2019. 231: p. 116541.
20. Neubauer, H., et al., Possible role of PGRMC1 in breast cancer development. Climacteric, 2013. 16(5): p. 509-13.
21. Mir, S.U., et al., Elevated progesterone receptor membrane component 1/sigma-2 receptor levels in lung tumors and plasma from lung cancer patients. Int J Cancer, 2012. 131(2): p. E1-9.
22. Peluso, J.J., Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer. Steroids, 2011. 76(9): p. 903-9.
23. Willibald, M., et al., High Level of Progesteron Receptor Membrane Component 1 (PGRMC 1) in Tissue of Breast Cancer Patients is Associated with Worse Response to Anthracycline-Based Neoadjuvant Therapy. Horm Metab Res, 2017. 49(8): p. 595-603.
24. Lange, C.A. and D. Yee, Progesterone and breast cancer. Womens Health (Lond), 2008. 4(2): p. 151-62.
25. Trabert, B., et al., Progesterone and Breast Cancer. Endocr Rev, 2020. 41(2).
26. Kabe, Y., et al., Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun, 2016. 7: p. 11030.
27. Peluso, J.J., J. Romak, and X. Liu, Progesterone Receptor Membrane Component-1 (PGRMC1) Is the Mediator of Progesterone’s Antiapoptotic Action in Spontaneously Immortalized Granulosa Cells As Revealed by PGRMC1 Small Interfering Ribonucleic Acid Treatment and Functional Analysis of PGRMC1 Mutations. Endocrinology, 2008. 149(2): p. 534-543.
28. Schumacher, M., et al., Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci, 2012. 6: p. 10.
29. Acconcia, F. and M. Marino, Principles of Endocrinology and Hormone Action. Steroid Hormones: Synthesis, Secretion, and Transport, ed. A. Lenzi. Switzerland: Springer.
30. Kalkhoff, R.K., Metabolic effects of progesterone. Am J Obstet Gynecol, 1982. 142(6 Pt 2): p. 735-8.
31. Bowman, K. and J. Rose, Estradiol stimulates glycogen synthesis whereas progesterone promotes glycogen catabolism in the uterus of the American mink (Neovison vison). Anim Sci J, 2017. 88(1): p. 45-54.
32. Gras, F., et al., Progesterone impairs cell respiration and suppresses a compensatory increase in glucose transport in isolated rat skeletal muscle: a non-genomic mechanism contributing to metabolic adaptation to late pregnancy? Diabetologia, 2007. 50(12): p. 2544-52.
33. Epstein, T., R.A. Gatenby, and J.S. Brown, The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One, 2017. 12(9): p. e0185085.
34. Diep, C.H., et al., Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol, 2015. 54(2): p. R31-53.
35. Kasubuchi, M., et al., Membrane progesterone receptor beta (mPRbeta/Paqr8) promotes progesterone-dependent neurite outgrowth in PC12 neuronal cells via non-G protein-coupled receptor (GPCR) signaling. Sci Rep, 2017. 7(1): p. 5168.
36. Garg, D., et al., Progesterone-Mediated Non-Classical Signaling. Trends Endocrinol Metab, 2017. 28(9): p. 656-668.
37. Falkenstein, E., et al., Localization of a putative progesterone membrane binding protein in porcine hepatocytes. Cell Mol Biol (Noisy-le-grand), 1998. 44(4): p. 571-8.
38. Peluso, J.J., V. Lodde, and X. Liu, Progesterone regulation of progesterone receptor membrane component 1 (PGRMC1) sumoylation and transcriptional activity in spontaneously immortalized granulosa cells. Endocrinology, 2012. 153(8): p. 3929-39.
39. Su, C., et al., Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology, 2012. 153(9): p. 4389-400.
40. Peluso, J.J., et al., Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability. Biol Reprod, 2005. 73(2): p. 261-70.
41. Jin, L. and Y. Zhou, Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett, 2019. 17(5): p. 4213-4221.
42. Katzen, H.M. and R.T. Schimke, Multiple forms of hexokinase in the rat: tissue distribution, age dependency, and properties. Proc Natl Acad Sci U S A, 1965. 54(4): p. 1218-25.
43. Wilson, J.E., Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol, 2003. 206(Pt 12): p. 2049-57.
44. Robey, R.B. and N. Hay, Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 2006. 25(34): p. 4683-96.
45. Hiller, S., et al., Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science, 2008. 321(5893): p. 1206-10.
46. Uhlen, M., et al., A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics, 2005. 4(12): p. 1920-32.
47. Darlington, G.J., J.H. Kelly, and G.J. Buffone, Growth and hepatospecific gene expression of human hepatoma cells in a defined medium. In Vitro Cell Dev Biol, 1987. 23(5): p. 349-54.
48. Sabbir, M.G., C.G. Taylor, and P. Zahradka, Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism. Biochim Biophys Acta Mol Cell Res, 2020: p. 118763.
49. Hartig, S.M., Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol, 2013. Chapter 14: p. Unit14 15.
50. Li, A., et al., Use of nitrocellulose membranes as a scaffold in cell culture. Cytotechnology, 2013. 65(1): p. 71-81.
51. Dunn, O.J., Multiple Comparisons Using Rank Sums. Technometrics, 1964. 6(3): p. 241-252.
52. Siegel, S., ed. Nonparametric statistics for the behavioral sciences. McGraw-Hill series in psychology. 1956, McGraw-Hill: New York. pages 312.
53. Muller-Taubenberger, A., et al., Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J, 2001. 20(23): p. 6772-82.
54. Mihara, K. and R. Sato, Molecular cloning and sequencing of cDNA for yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure. EMBO J, 1985. 4(3): p. 769-74.
55. Hornbeck, P.V., et al., PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 2012. 40(Database issue): p. D261-70.
56. Tan, B., et al., The profiles of mitochondrial respiration and glycolysis using extracellular flux analysis in porcine enterocyte IPEC-J2. Anim Nutr, 2015. 1(3): p. 239-243.
57. Eden, E., et al., Proteome half-life dynamics in living human cells. Science, 2011. 331(6018): p. 764-8.
58. Zhou, P., Determining protein half-lives. Methods Mol Biol, 2004. 284: p. 67-77.
59. Theurey, P., et al., Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol, 2016. 8(2): p. 129-43.
60. Stacchiotti, A., et al., Perspective: Mitochondria-ER Contacts in Metabolic Cellular Stress Assessed by Microscopy. Cells, 2018. 8(1).
61. Hornbeck, P.V., et al., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res, 2015. 43(Database issue): p. D512-20.
62. Cahill, M.A., et al., PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity. Oncotarget, 2016. 7(32): p. 50822-50827.
63. Kaneko, T., L. Li, and S.S. Li, The SH3 domain--a family of versatile peptide- and protein-recognition module. Front Biosci, 2008. 13: p. 4938-52.
64. Pantic, B., et al., Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death & Disease, 2013. 4(10): p. e858-e858.
65. Jurczak, M.J., et al., The role of protein translocation in the regulation of glycogen metabolism. J Cell Biochem, 2008. 104(2): p. 435-43.
66. Neubauer, H., et al., Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res, 2008. 10(5): p. R85.
67. Harbeck, N., et al., Breast cancer. Nat Rev Dis Primers, 2019. 5(1): p. 66.
68. Shah, R., K. Rosso, and S.D. Nathanson, Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol, 2014. 5(3): p. 283-98.
69. Nasrazadani, A., et al., Precision Medicine in Hormone Receptor-Positive Breast Cancer. Front Oncol, 2018. 8: p. 144.
70. Willibald, M., et al., Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget, 2017. 8(42): p. 72480-72493.
71. Xu, G. and S.R. Jaffrey, Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev, 2013. 29: p. 73-109.
72. Santos, A.L. and A.B. Lindner, Protein Posttranslational Modifications: Roles in Aging and Age-Related Disease. Oxid Med Cell Longev, 2017. 2017: p. 5716409.
73. Hunter, T., The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell, 2007. 28(5): p. 730-8.
74. Magnani, M., et al., A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates. Biochem J, 1992. 285 ( Pt 1): p. 193-9.
75. Aleshin, A.E., et al., The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 1998. 6(1): p. 39-50.
76. Ishihara, S., Y. Taketani, and M. Mizuno, Stimulatory action of progesterone on the synthesis of glycogen in primary cell culture of human endometrium. Asia Oceania J Obstet Gynaecol, 1988. 14(1): p. 117-22.
77. John, S., J.N. Weiss, and B. Ribalet, Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One, 2011. 6(3): p. e17674.
78. Schwarz, D.S. and M.D. Blower, The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci, 2016. 73(1): p. 79-94.
79. Baumann, O. and B. Walz, Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol, 2001. 205: p. 149-214.
80. Kucharz, K., T. Wieloch, and H. Toresson, Rapid fragmentation of the endoplasmic reticulum in cortical neurons of the mouse brain in situ following cardiac arrest. J Cereb Blood Flow Metab, 2011. 31(8): p. 1663-7.
81. Rieusset, J., The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis, 2018. 9(3): p. 388.
82. Tubbs, E., et al., Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 2014. 63(10): p. 3279-94.
83. Theurey, P. and J. Rieusset, Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends Endocrinol Metab, 2017. 28(1): p. 32-45.
84. Sood, A., et al., A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc Natl Acad Sci U S A, 2014. 111(45): p. 16017-22.
85. Szabadkai, G., et al., Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol, 2006. 175(6): p. 901-11.
86. Allouche, M., et al., ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro. Biochem Biophys Res Commun, 2012. 429(1-2): p. 12-7.
87. Camara, A.K.S., et al., Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol, 2017. 8: p. 460.
88. Pastorino, J.G. and J.B. Hoek, Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr, 2008. 40(3): p. 171-82.
89. Rogatzki, M.J., et al., Lactate is always the end product of glycolysis. Front Neurosci, 2015. 9: p. 22.
90. Liberti, M.V. and J.W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci, 2016. 41(3): p. 211-218.
91. Warburg, O., F. Wind, and E. Negelein, The Metabolism of Tumors in the Body. J Gen Physiol, 1927. 8(6): p. 519-30.
92. Beavis, R.C., Using the global proteome machine for protein identification. Methods Mol Biol, 2006. 328: p. 217-28.
93. Betz, C., et al., Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A, 2013. 110(31): p. 12526-34.
94. Szado, T., et al., Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A, 2008. 105(7): p. 2427-32.