1 Mizushima, N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol63, 1-10, doi:10.1016/j.ceb.2019.12.001 (2019).
2 Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol27, 107-132, doi:10.1146/annurev-cellbio-092910-154005 (2011).
3 Yu, L., Chen, Y. & Tooze, S. A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy14, 207-215, doi:10.1080/15548627.2017.1378838 (2018).
4 Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol19, 349-364, doi:10.1038/s41580-018-0003-4 (2018).
5 Bento, C. F. et al. Mammalian Autophagy: How Does It Work? Annu Rev Biochem85, 685-713, doi:10.1146/annurev-biochem-060815-014556 (2016).
6 Zhao, Y. G. & Zhang, H. Core autophagy genes and human diseases. Curr Opin Cell Biol61, 117-125, doi:10.1016/j.ceb.2019.08.003 (2019).
7 Yang, Y. & Klionsky, D. J. Autophagy and disease: unanswered questions. Cell Death Differ27, 858-871, doi:10.1038/s41418-019-0480-9 (2020).
8 Levine, B. & Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell176, 11-42, doi:10.1016/j.cell.2018.09.048 (2019).
9 Poillet-Perez, L. & White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev33, 610-619, doi:10.1101/gad.325514.119 (2019).
10 Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol182, 685-701, doi:10.1083/jcb.200803137 (2008).
11 Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol11, 1433-1437, doi:10.1038/ncb1991 (2009).
12 Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy5, 1180-1185, doi:10.4161/auto.5.8.10274 (2009).
13 Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell24, 2918-2931, doi:10.1091/mbc.E13-07-0381 (2013).
14 Zoppino, F. C., Militello, R. D., Slavin, I., Alvarez, C. & Colombo, M. I. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic11, 1246-1261, doi:10.1111/j.1600-0854.2010.01086.x (2010).
15 Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell141, 656-667, doi:10.1016/j.cell.2010.04.009 (2010).
16 Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol12, 747-757, doi:10.1038/ncb2078 (2010).
17 Moreau, K., Ravikumar, B., Renna, M., Puri, C. & Rubinsztein, D. C. Autophagosome precursor maturation requires homotypic fusion. Cell146, 303-317, doi:10.1016/j.cell.2011.06.023 (2011).
18 Geng, J., Nair, U., Yasumura-Yorimitsu, K. & Klionsky, D. J. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol Biol Cell21, 2257-2269, doi:10.1091/mbc.E09-11-0969 (2010).
19 Guo, Y. et al. AP1 is essential for generation of autophagosomes from the trans-Golgi network. J Cell Sci125, 1706-1715, doi:10.1242/jcs.093203 (2012).
20 Ge, L., Melville, D., Zhang, M. & Schekman, R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife2, e00947, doi:10.7554/eLife.00947 (2013).
21 Ge, L., Zhang, M. & Schekman, R. Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife3, e04135, doi:10.7554/eLife.04135 (2014).
22 Ge, L. et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep18, 1586-1603, doi:10.15252/embr.201744559 (2017).
23 Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature465, 942-946, doi:10.1038/nature09076 (2010).
24 Rong, Y. et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol14, 924-934, doi:10.1038/ncb2557 (2012).
25 Rong, Y. et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A108, 7826-7831, doi:10.1073/pnas.1013800108 (2011).
26 Du, W. et al. Kinesin 1 Drives Autolysosome Tubulation. Dev Cell37, 326-336, doi:10.1016/j.devcel.2016.04.014 (2016).
27 Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell151, 1256-1269, doi:10.1016/j.cell.2012.11.001 (2012).
28 Takats, S. et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol201, 531-539, doi:10.1083/jcb.201211160 (2013).
29 Uematsu, M., Nishimura, T., Sakamaki, Y., Yamamoto, H. & Mizushima, N. Accumulation of undegraded autophagosomes by expression of dominant-negative STX17 (syntaxin 17) mutants. Autophagy13, 1452-1464, doi:10.1080/15548627.2017.1327940 (2017).
30 Traer, C. J. et al. SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol9, 1370-1380, doi:10.1038/ncb1656 (2007).
31 van Weering, J. R. et al. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. EMBO J31, 4466-4480, doi:10.1038/emboj.2012.283 (2012).
32 Bonifacino, J. S. & Hurley, J. H. Retromer. Curr Opin Cell Biol20, 427-436, doi:10.1016/j.ceb.2008.03.009 (2008).
33 Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol9, 574-582, doi:10.1038/nrm2427 (2008).
34 Wang, J. et al. Endosomal receptor trafficking: Retromer and beyond. Traffic19, 578-590, doi:10.1111/tra.12574 (2018).
35 Cullen, P. J. & Steinberg, F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol19, 679-696, doi:10.1038/s41580-018-0053-7 (2018).
36 Ma, M. & Burd, C. G. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic21, 45-59, doi:10.1111/tra.12693 (2020).
37 Weeratunga, S., Paul, B. & Collins, B. M. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol65, 17-27, doi:10.1016/j.ceb.2020.02.005 (2020).
38 Wassmer, T. et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell17, 110-122, doi:10.1016/j.devcel.2009.04.016 (2009).
39 Rojas, R., Kametaka, S., Haft, C. R. & Bonifacino, J. S. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol27, 1112-1124, doi:10.1128/MCB.00156-06 (2007).
40 Wassmer, T. et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci120, 45-54, doi:10.1242/jcs.03302 (2007).
41 Chen, K. E., Healy, M. D. & Collins, B. M. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic20, 465-478, doi:10.1111/tra.12649 (2019).
42 Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303, 495-499, doi:10.1126/science.1092586 (2004).
43 McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature438, 590-596, doi:10.1038/nature04396 (2005).
44 Suetsugu, S., Toyooka, K. & Senju, Y. Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin Cell Dev Biol21, 340-349, doi:10.1016/j.semcdb.2009.12.002 (2010).
45 van Kerkhof, P. et al. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J24, 2851-2861, doi:10.1038/sj.emboj.7600756 (2005).
46 Steinberg, F., Heesom, K. J., Bass, M. D. & Cullen, P. J. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J Cell Biol197, 219-230, doi:10.1083/jcb.201111121 (2012).
47 McNally, K. E. et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol19, 1214-1225, doi:10.1038/ncb3610 (2017).
48 Hamasaki, M. et al. Autophagosomes form at ER-mitochondria contact sites. Nature495, 389-393, doi:10.1038/nature11910 (2013).
49 Kumar, S. et al. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J Cell Biol217, 997-1013, doi:10.1083/jcb.201708039 (2018).
50 Kumar, S. et al. Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation. Dev Cell49, 130-144 e136, doi:10.1016/j.devcel.2019.01.027 (2019).
51 Kvainickas, A. et al. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol216, 3677-3693, doi:10.1083/jcb.201702137 (2017).
52 Simonetti, B., Danson, C. M., Heesom, K. J. & Cullen, P. J. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol216, 3695-3712, doi:10.1083/jcb.201703015 (2017).
53 Elwell, C. A. et al. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. Elife6, doi:10.7554/eLife.22709 (2017).
54 Simonetti, B. et al. Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins. Nat Cell Biol21, 1219-1233, doi:10.1038/s41556-019-0393-3 (2019).
55 Griffin, C. T., Trejo, J. & Magnuson, T. Genetic evidence for a mammalian retromer complex containing sorting nexins 1 and 2. Proc Natl Acad Sci U S A102, 15173-15177, doi:10.1073/pnas.0409558102 (2005).