As Earth’s climate warms, surface melting of the Greenland Ice Sheet is projected to intensify, contributing to rising sea levels1–4. Observations5–7 and theory8–10 indicate that meltwater generated at the surface of an ice sheet can drain to its bed via crevasses and moulins, where it flows relatively unhindered to the coast. This understanding of the movement of water within, and beneath, ice sheets, underpins theoretical models which are used to make projections of ice sheet change11. In this study, we show the first evidence of a disruptive drainage pathway in Greenland, whereby a subglacial flood – triggered by a draining subglacial lake – breaks through the ice sheet surface. This unprecedented outburst of water causes fracturing of the ice sheet, and the formation of 25-metre-high ice blocks. These observations reveal a complex, bidirectional coupling between the surface and basal hydrological systems of an ice sheet, which was previously unknown in Greenland. Analysis of over 30 years of satellite imagery confirms that the subglacial lake has drained at least once previously. However, on that occasion the floodwater failed to breach the ice surface. The two contrasting drainage regimes, coupled with the increased rates of ice melting and thinning that have occurred over the past three decades years, suggest that Arctic climate warming may have facilitated a new, disruptive mode of hydrological drainage on the ice sheet. As such, our observations reveal an emerging and poorly understood phenomenon, which is not currently captured in physical ice sheet models.