For the sparse correlation between channels in multiple input multiple output filter bank multicarrier with offset quadrature amplitude modulation (MIMO-FBMC/OQAM) systems, the distributed compressed sensing (DCS)-based channel estimation approach is studied. A sparse adaptive distributed sparse channel estimation method based on weak selection threshold is proposed. Firstly, the correlation between MIMO channels is utilized to represent a joint sparse model, and channel estimation is transformed into a joint sparse signal reconstruction problem. Then, the number of correlation atoms for inner product operation is optimized by weak selection threshold, and sparse signal reconstruction is realized by sparse adaptation. The experiment results show that proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher channel estimation performance than classical orthogonal matching pursuit (OMP) method and other traditional DCS methods in the time-frequency dual selective channels.