Peroxisome proliferator-activated receptor β/δ(PPARβ/δ) activates AMP-activated protein kinase (AMPK) and plays a crucial role in glucose and lipid metabolism. Here, we examined whether the beneficial effects of PPARβ/δ activation depended on growth differentiation factor 15 (GDF15), a stress response cytokine that regulates energy metabolism. Pharmacological PPARβ/δ activation increased GDF15 levels and ameliorated glucose intolerance, fatty acid oxidation, endoplasmic reticulum stress, inflammation and activated AMPK in HFD-fed mice, whereas these effects were abrogated by the injection of a GDF15 neutralizing antibody and in Gdf15-/- mice. The AMPK-p53 pathway was involved in the PPARβ/δ-mediated increase in GDF15, which in turn activated again AMPK. Finally, Gdf15-/- mice showed reduced AMPK activation in skeletal muscle, whereas GDF15 administration resulted in AMPK activation in this organ. Collectively, these data reveal a novel mechanism by which PPARβ/δ activation increases the levels of GDF15 via AMPK and p53, which in turn mediates the metabolic effects of PPARβ/δ by sustaining AMPK activation.