1. Forster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55-70. Epub 2008/04/17. doi: 10.1007/s00418-008-0424-9. PubMed PMID: 18415116; PMCID: PMC2413111.
2. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007;127(11):2525-32. Epub 2007/10/16. doi: 10.1038/sj.jid.5700865. PubMed PMID: 17934504.
3. Garrido-Urbani S, Bradfield PF, Lee BP, Imhof BA. Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans. 2008;36(Pt 2):203-11. doi: 10.1042/BST0360203. PubMed PMID: 18363562.
4. Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochimica et biophysica acta. 2008;1778(3):794-809. doi: 10.1016/j.bbamem.2007.09.003. PubMed PMID: 17961505.
5. Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012;1257:184-92. doi: 10.1111/j.1749-6632.2012.06558.x. PubMed PMID: 22671605.
6. Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7-22. doi: 10.1177/0300985812469883. PubMed PMID: 23345459; PMCID: 3628536.
7. Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018;10(1). Epub 2017/05/17. doi: 10.1101/cshperspect.a029314. PubMed PMID: 28507021; PMCID: PMC5749156.
8. Alexander JS, Dayton T, Davis C, Hill S, Jackson TH, Blaschuk O, Symonds M, Okayama N, Kevil CG, Laroux FS, Berney SM, Kimpel D. Activated T-lymphocytes express occludin, a component of tight junctions. Inflammation. 1998;22(6):573-82. PubMed PMID: 9824772.
9. Yang J, Hills D, Taylor E, Pfeffer K, Ure J, Medvinsky A. Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deletor mice. J Immunol Methods. 2008;337(2):81-7. doi: 10.1016/j.jim.2008.06.001. PubMed PMID: 18602924.
10. Inagaki-Ohara K, Sawaguchi A, Suganuma T, Matsuzaki G, Nawa Y. Intraepithelial lymphocytes express junctional molecules in murine small intestine. Biochem Biophys Res Commun. 2005;331(4):977-83. doi: 10.1016/j.bbrc.2005.04.025. PubMed PMID: 15882974.
11. Sung SS, Fu SM, Rose CE, Jr., Gaskin F, Ju ST, Beaty SR. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. Journal of immunology. 2006;176(4):2161-72. PubMed PMID: 16455972.
12. Zimmerli SC, Hauser C. Langerhans cells and lymph node dendritic cells express the tight junction component claudin-1. J Invest Dermatol. 2007;127(10):2381-90. doi: 10.1038/sj.jid.5700882. PubMed PMID: 17508021.
13. Blank F, Wehrli M, Lehmann A, Baum O, Gehr P, von Garnier C, Rothen-Rutishauser BM. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology. 2011;216(1-2):86-95. doi: 10.1016/j.imbio.2010.02.006. PubMed PMID: 20362352.
14. Alexander JS, Elrod JW, Park JH. Roles of leukocyte and immune cell junctional proteins. Microcirculation. 2001;8(3):169-79. doi: 10.1038/sj/mn/7800077. PubMed PMID: 11498780.
15. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature reviews Immunology. 2007;7(6):467-77. doi: 10.1038/nri2096. PubMed PMID: 17525755.
16. Koenen RR, Pruessmeyer J, Soehnlein O, Fraemohs L, Zernecke A, Schwarz N, Reiss K, Sarabi A, Lindbom L, Hackeng TM, Weber C, Ludwig A. Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood. 2009;113(19):4799-809. doi: 10.1182/blood-2008-04-152330. PubMed PMID: 19258599.
17. Paul D, Baena V, Ge S, Jiang X, Jellison ER, Kiprono T, Agalliu D, Pachter JS. Appearance of claudin-5(+) leukocytes in the central nervous system during neuroinflammation: a novel role for endothelial-derived extracellular vesicles. Journal of neuroinflammation. 2016;13(1):292. Epub 2016/11/18. doi: 10.1186/s12974-016-0755-8. PubMed PMID: 27852330; PMCID: PMC5112695.
18. Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta neuropathologica. 2017;133(2):223-44. Epub 2016/10/22. doi: 10.1007/s00401-016-1631-4. PubMed PMID: 27766432; PMCID: PMC5250666.
19. Mandel I, Paperna T, Glass-Marmor L, Volkowich A, Badarny S, Schwartz I, Vardi P, Koren I, Miller A. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J Cell Mol Med. 2012;16(4):765-75. doi: 10.1111/j.1582-4934.2011.01380.x. PubMed PMID: 21762372.
20. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. The Journal of cell biology. 2003;161(3):653-60. doi: 10.1083/jcb.200302070. PubMed PMID: 12743111; PMCID: 2172943.
21. Paul D, Ge S, Lemire Y, Jellison ER, Serwanski DR, Ruddle NH, Pachter JS. Cell-selective knockout and 3D confocal image analysis reveals separate roles for astrocyte-and endothelial-derived CCL2 in neuroinflammation. Journal of neuroinflammation. 2014;11:10. doi: 10.1186/1742-2094-11-10. PubMed PMID: 24444311; PMCID: 3906899.
22. Goverman J, Brabb T, Paez A, Harrington C, von Dassow P. Initiation and regulation of CNS autoimmunity. Crit Rev Immunol. 1997;17(5-6):469-80. Epub 1997/01/01. PubMed PMID: 9419434.
23. Racke MK, Hu W, Lovett-Racke AE. PTX cruiser: driving autoimmunity via TLR4. Trends in immunology. 2005;26(6):289-91. Epub 2005/06/01. doi: 10.1016/j.it.2005.03.012. PubMed PMID: 15922942.
24. Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB. TLR Tolerance as a Treatment for Central Nervous System Autoimmunity. Journal of immunology. 2016;197(6):2110-8. Epub 2016/08/10. doi: 10.4049/jimmunol.1600876. PubMed PMID: 27503211.
25. Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585(23):3770-80. doi: 10.1016/j.febslet.2011.04.066. PubMed PMID: 21550344.
26. Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248(1):228-39. Epub 2012/06/26. doi: 10.1111/j.1600-065X.2012.01127.x. PubMed PMID: 22725965; PMCID: PMC3383666.
27. Furtado GC, Marcondes MC, Latkowski JA, Tsai J, Wensky A, Lafaille JJ. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. Journal of immunology. 2008;181(7):4648-55. Epub 2008/09/20. doi: 10.4049/jimmunol.181.7.4648. PubMed PMID: 18802067; PMCID: PMC3973185.
28. O'Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, Anderton SM. Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. Journal of immunology. 2008;181(6):3750-4. Epub 2008/09/05. doi: 10.4049/jimmunol.181.6.3750. PubMed PMID: 18768826; PMCID: PMC2619513.
29. Wimmer I, Tietz S, Nishihara H, Deutsch U, Sallusto F, Gosselet F, Lyck R, Muller WA, Lassmann H, Engelhardt B. PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. Front Immunol. 2019;10:711. Epub 2019/04/27. doi: 10.3389/fimmu.2019.00711. PubMed PMID: 31024547; PMCID: PMC6460670.
30. Qualai J, Li LX, Cantero J, Tarrats A, Fernandez MA, Sumoy L, Rodolosse A, McSorley SJ, Genesca M. Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PloS one. 2016;11(4):e0154253. Epub 2016/04/28. doi: 10.1371/journal.pone.0154253. PubMed PMID: 27119555; PMCID: PMC4847787.
31. Xu H, Dawson R, Crane IJ, Liversidge J. Leukocyte diapedesis in vivo induces transient loss of tight junction protein at the blood-retina barrier. Invest Ophthalmol Vis Sci. 2005;46(7):2487-94. doi: 10.1167/iovs.04-1333. PubMed PMID: 15980240; PMCID: 2478725.
32. Winger RC, Koblinski JE, Kanda T, Ransohoff RM, Muller WA. Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier. Journal of immunology. 2014;193(5):2427-37. Epub 2014/07/27. doi: 10.4049/jimmunol.1400700. PubMed PMID: 25063869; PMCID: PMC4138548.
33. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. Journal of immunology. 2001;166(12):7579-87. Epub 2001/06/08. doi: 10.4049/jimmunol.166.12.7579. PubMed PMID: 11390514.
34. Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med. 2001;194(5):669-76. Epub 2001/09/06. doi: 10.1084/jem.194.5.669. PubMed PMID: 11535634; PMCID: PMC2195947.
35. Stromnes IM, Goverman JM. Passive induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1952-60. Epub 2007/05/10. doi: 10.1038/nprot.2006.284. PubMed PMID: 17487182.
36. Bettini M, Rosenthal K, Evavold BD. Pathogenic MOG-reactive CD8+ T cells require MOG-reactive CD4+ T cells for sustained CNS inflammation during chronic EAE. Journal of neuroimmunology. 2009;213(1-2):60-8. Epub 2009/06/23. doi: 10.1016/j.jneuroim.2009.05.017. PubMed PMID: 19540601; PMCID: PMC2752735.
37. Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol. 2019;16(6):531-9. Epub 2019/03/16. doi: 10.1038/s41423-019-0221-5. PubMed PMID: 30874627; PMCID: PMC6804597.
38. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual review of immunology. 2009;27:669-92. Epub 2009/01/10. doi: 10.1146/annurev.immunol.021908.132557. PubMed PMID: 19132917.
39. Gasco S, Zaragoza P, Garcia-Redondo A, Calvo AC, Osta R. Inflammatory and non-inflammatory monocytes as novel prognostic biomarkers of survival in SOD1G93A mouse model of Amyotrophic Lateral Sclerosis. PloS one. 2017;12(9):e0184626. Epub 2017/09/09. doi: 10.1371/journal.pone.0184626. PubMed PMID: 28886177; PMCID: PMC5591000.
40. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2(1):1. Epub 2014/01/09. doi: 10.1186/2050-7771-2-1. PubMed PMID: 24398220; PMCID: PMC3892095.
41. King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009;113(14):3190-7. Epub 2009/02/07. doi: 10.1182/blood-2008-07-168575. PubMed PMID: 19196868; PMCID: PMC2665891.
42. Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallieres L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev. 2017;16(3):294-307. Epub 2017/02/06. doi: 10.1016/j.autrev.2017.01.013. PubMed PMID: 28161558.
43. Pierson ER, Wagner CA, Goverman JM. The contribution of neutrophils to CNS autoimmunity. Clin Immunol. 2018;189:23-8. Epub 2016/07/06. doi: 10.1016/j.clim.2016.06.017. PubMed PMID: 27377536; PMCID: PMC5203971.
44. Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvascular research. 2013;86:1-10. doi: 10.1016/j.mvr.2012.12.001. PubMed PMID: 23261753; PMCID: 3570614.
45. Wang D, Li SP, Fu JS, Zhang S, Bai L, Guo L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. J Neurophysiol. 2016;116(5):2173-9. Epub 2016/11/03. doi: 10.1152/jn.00510.2016. PubMed PMID: 27535376; PMCID: PMC5102308.
46. Lanz TV, Becker S, Osswald M, Bittner S, Schuhmann MK, Opitz CA, Gaikwad S, Wiestler B, Litzenburger UM, Sahm F, Ott M, Iwantscheff S, Grabitz C, Mittelbronn M, von Deimling A, Winkler F, Meuth SG, Wick W, Platten M. Protein kinase Cbeta as a therapeutic target stabilizing blood-brain barrier disruption in experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(36):14735-40. Epub 2013/08/21. doi: 10.1073/pnas.1302569110. PubMed PMID: 23959874; PMCID: PMC3767524.
47. Lasek-Bal A, Kokot A, Gendosz de Carrillo D, Student S, Pawletko K, Krzan A, Puz P, Bal W, Jedrzejowska-Szypulka H. Plasma Levels of Occludin and Claudin-5 in Acute Stroke Are Correlated with the Type and Location of Stroke but Not with the Neurological State of Patients-Preliminary Data. Brain Sci. 2020;10(11). Epub 2020/11/14. doi: 10.3390/brainsci10110831. PubMed PMID: 33182224; PMCID: PMC7695327.
48. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. Journal of neuroscience research. 1991;28(2):254-60. Epub 1991/02/01. doi: 10.1002/jnr.490280213. PubMed PMID: 2033653.
49. Ludowyk PA, Willenborg DO, Parish CR. Selective localisation of neuro-specific T lymphocytes in the central nervous system. Journal of neuroimmunology. 1992;37(3):237-50. Epub 1992/04/01. doi: 10.1016/0165-5728(92)90008-9. PubMed PMID: 1373155.
50. Engelhardt B, Martin-Simonet MT, Rott LS, Butcher EC, Michie SA. Adhesion molecule phenotype of T lymphocytes in inflamed CNS. Journal of neuroimmunology. 1998;84(1):92-104. Epub 1998/05/26. doi: 10.1016/s0165-5728(97)00237-3. PubMed PMID: 9600713.
51. Manjunath N, Shankar P, Stockton B, Dubey PD, Lieberman J, von Andrian UH. A transgenic mouse model to analyze CD8(+) effector T cell differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(24):13932-7. Epub 1999/11/26. doi: 10.1073/pnas.96.24.13932. PubMed PMID: 10570176; PMCID: PMC24168.
52. Alvarez-Sanchez N, Cruz-Chamorro I, Lopez-Gonzalez A, Utrilla JC, Fernandez-Santos JM, Martinez-Lopez A, Lardone PJ, Guerrero JM, Carrillo-Vico A. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun. 2015;50:101-14. Epub 2015/07/03. doi: 10.1016/j.bbi.2015.06.021. PubMed PMID: 26130320.
53. Margraf A, Ley K, Zarbock A. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends in immunology. 2019;40(7):613-34. Epub 2019/06/09. doi: 10.1016/j.it.2019.04.010. PubMed PMID: 31175062; PMCID: PMC6745447.
54. Rose LM, Richards TL, Peterson J, Petersen R, Alvord EC, Jr. Resolution of CNS lesions following treatment of experimental allergic encephalomyelitis in macaques with monoclonal antibody to the CD18 leukocyte integrin. Multiple sclerosis. 1997;2(6):259-66. Epub 1997/01/01. doi: 10.1177/135245859700200601. PubMed PMID: 9065916.
55. Li C, Menoret A, Farragher C, Ouyang Z, Bonin C, Holvoet P, Vella AT, Zhou B. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight. 2019;5. Epub 2019/04/17. doi: 10.1172/jci.insight.126453. PubMed PMID: 30990466; PMCID: PMC6542613.
56. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z, Prinz M, Fantl WJ, Nolan GP, Steinman L. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci. 2018;21(4):541-51. Epub 2018/03/07. doi: 10.1038/s41593-018-0100-x. PubMed PMID: 29507414.
57. Andrews AM, Lutton EM, Merkel SF, Razmpour R, Ramirez SH. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury. Frontiers in cellular neuroscience. 2016;10:43. doi: 10.3389/fncel.2016.00043. PubMed PMID: 26973460; PMCID: PMC4770030.
58. Wolburg H, Wolburg-Buchholz K, Engelhardt B. Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta neuropathologica. 2005;109(2):181-90. doi: 10.1007/s00401-004-0928-x. PubMed PMID: 15549331.
59. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA. Transcellular diapedesis is initiated by invasive podosomes. Immunity. 2007;26(6):784-97. Epub 2007/06/16. doi: 10.1016/j.immuni.2007.04.015. PubMed PMID: 17570692; PMCID: PMC2094044.
60. Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol. 2006;8(2):113-23. Epub 2006/01/24. doi: 10.1038/ncb1356. PubMed PMID: 16429128.
61. Piontek J, Winkler L, Wolburg H, Muller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2008;22(1):146-58. doi: 10.1096/fj.07-8319com. PubMed PMID: 17761522.
62. Brezinschek RI, Oppenheimer-Marks N, Lipsky PE. Activated T cells acquire endothelial cell surface determinants during transendothelial migration. Journal of immunology. 1999;162(3):1677-84. Epub 1999/02/11. PubMed PMID: 9973429.
63. Sancho D, Yanez-Mo M, Tejedor R, Sanchez-Madrid F. Activation of peripheral blood T cells by interaction and migration through endothelium: role of lymphocyte function antigen-1/intercellular adhesion molecule-1 and interleukin-15. Blood. 1999;93(3):886-96. Epub 1999/01/28. PubMed PMID: 9920837.
64. Carman CV, Martinelli R. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol. 2015;6:603. Epub 2015/12/05. doi: 10.3389/fimmu.2015.00603. PubMed PMID: 26635815; PMCID: PMC4657048.
65. Wong CW, Wiedle G, Ballestrem C, Wehrle-Haller B, Etteldorf S, Bruckner M, Engelhardt B, Gisler RH, Imhof BA. PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin alphavbeta3 in Cis. Mol Biol Cell. 2000;11(9):3109-21. Epub 2000/09/12. doi: 10.1091/mbc.11.9.3109. PubMed PMID: 10982404; PMCID: PMC14979.
66. Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355(3):607-19. Epub 2014/01/18. doi: 10.1007/s00441-013-1779-3. PubMed PMID: 24435645; PMCID: PMC3975704.
67. Ahmed SR, McGettrick HM, Yates CM, Buckley CD, Ratcliffe MJ, Nash GB, Rainger GE. Prostaglandin D2 regulates CD4+ memory T cell trafficking across blood vascular endothelium and primes these cells for clearance across lymphatic endothelium. Journal of immunology. 2011;187(3):1432-9. Epub 2011/07/01. doi: 10.4049/jimmunol.1100299. PubMed PMID: 21715691.
68. Manglani M, Gossa S, McGavern DB. Leukocyte Isolation from Brain, Spinal Cord, and Meninges for Flow Cytometric Analysis. Curr Protoc Immunol. 2018;121(1):e44. Epub 2018/07/25. doi: 10.1002/cpim.44. PubMed PMID: 30040211; PMCID: PMC6060638.
69. Kvietys PR, Sandig M. Neutrophil diapedesis: paracellular or transcellular? News Physiol Sci. 2001;16:15-9. Epub 2001/06/08. doi: 10.1152/physiologyonline.2001.16.1.15. PubMed PMID: 11390940.
70. Dejana E. The transcellular railway: insights into leukocyte diapedesis. Nat Cell Biol. 2006;8(2):105-7. doi: 10.1038/ncb0206-105. PubMed PMID: 16450004.
71. Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol. 2020;2(1):H1-H18. Epub 2020/09/15. doi: 10.1530/VB-19-0033. PubMed PMID: 32923970; PMCID: PMC7439848.