1. Tysnes O-B, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017 Aug;124(8):901–5.
2. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy: The Shaking Palsy: Past, Present and Future. Mov Disord. 2017 Sep;32(9):1264–310.
3. Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. International Journal of Neuroscience. 2019 Jan 2;129(1):55–93.
4. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature. 1997 Aug;388(6645):839–40.
5. Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003 Mar;24(2):197–211.
6. Barker RA, Williams-Gray CH. Review: The spectrum of clinical features seen with alpha synuclein pathology. Neuropathol Appl Neurobiol. 2016 Feb;42(1):6–19.
7. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013 Aug;136(8):2419–31.
8. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson’s Disease. Cell Stem Cell. 2014 Nov;15(5):653–65.
9. Cyranoski D. ‘Reprogrammed’ stem cells implanted into patient with Parkinson’s disease. Nature. 2018 Nov 14;d41586-018-07407–9.
10. Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020 Feb;21(2):103–15.
11. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog Brain Res. 1990;85:119–46.
12. Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, et al. Acute and Long-Term Effects of Subthalamic Nucleus Stimulation in Parkinson’s Disease. Stereotactic and Functional Neurosurgery. 1994;62(1–4):76–84.
13. Heywood P, Gill S. Bilateral dorsolateral subthalamotomy for advanced Parkinson’s disease. The Lancet. 1997 Oct;350(9086):1224.
14. Kim H-J, Jeon BS, Paek SH. Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson’s Disease. JMD. 2015 May 31;8(2):83–91.
15. Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K, et al. Non-motor outcomes depend on location of neurostimulation in Parkinson’s disease. Brain. 2019 Nov 1;142(11):3592–604.
16. Accolla EA, Pollo C. Mood Effects After Deep Brain Stimulation for Parkinson’s Disease: An Update. Front Neurol. 2019;10:617.
17. Lorenc-Koci E, Wolfarth S, Ossowska K. Haloperidol-increased muscle tone in rats as a model of parkinsonian rigidity. Exp Brain Res [Internet]. 1996 May [cited 2021 Apr 12];109(2). Available from: http://link.springer.com/10.1007/BF00231786
18. Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease: Animal models of Parkinson’s disease. British Journal of Pharmacology. 2011 Oct;164(4):1357–91.
19. Triarhou LC. Introduction. Dopamine and Parkinson’s disease. Adv Exp Med Biol. 2002;517:1–14.
20. Cenci MA, Björklund A. Animal models for preclinical Parkinson’s research: An update and critical appraisal. In: Progress in Brain Research [Internet]. Elsevier; 2020 [cited 2021 May 4]. p. 27–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079612320300200
21. Boix J, Padel T, Paul G. A partial lesion model of Parkinson’s disease in mice – Characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behavioural Brain Research. 2015 May;284:196–206.
22. Park SE, Song K-I, Kim H, Chung S, Youn I. Graded 6-OHDA-induced dopamine depletion in the nigrostriatal pathway evokes progressive pathological neuronal activities in the subthalamic nucleus of a hemi-parkinsonian mouse. Behav Brain Res. 2018 May 15;344:42–7.
23. Glinka Y, Gassen M, Youdim MBH. Mechanism of 6-hydroxydopamine neurotoxicity. In: Riederer P, Calne DB, Horowski R, Mizuno Y, Poewe W, Youdim MBH, editors. Advances in Research on Neurodegeneration [Internet]. Vienna: Springer Vienna; 1997 [cited 2021 Mar 29]. p. 55–66. (Journal of Neural Transmission. Supplementa; vol. 50). Available from: http://link.springer.com/10.1007/978-3-7091-6842-4_7
24. Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA. Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiology of Disease. 2011 Jun;42(3):327–40.
25. Sanders TH, Jaeger D. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiology of Disease. 2016 Nov;95:225–37.
26. Bagga V, Dunnett SB, Fricker RA. The 6-OHDA mouse model of Parkinson’s disease – Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behavioural Brain Research. 2015 Jul;288:107–17.
27. Canteras NS, Simerly RB, Swanson LW. Connections of the posterior nucleus of the amygdala. J Comp Neurol. 1992 Oct 8;324(2):143–79.
28. Hasue RH, Shammah-Lagnado SJ. Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: A combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol. 2002 Dec 2;454(1):15–33.
29. Matthews GA, Nieh EH, Vander Weele CM, Halbert SA, Pradhan RV, Yosafat AS, et al. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation. Cell. 2016 Feb;164(4):617–31.
30. Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics. 2005 Jul 1;14(13):1709–25.
31. Greene JG, Dingledine R, Greenamyre JT. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiology of Disease. 2005 Feb;18(1):19–31.
32. Poulin J-F, Zou J, Drouin-Ouellet J, Kim K-YA, Cicchetti F, Awatramani RB. Defining Midbrain Dopaminergic Neuron Diversity by Single-Cell Gene Expression Profiling. Cell Reports. 2014 Nov;9(3):930–43.
33. Viereckel T, Dumas S, Smith-Anttila CJA, Vlcek B, Bimpisidis Z, Lagerström MC, et al. Midbrain Gene Screening Identifies a New Mesoaccumbal Glutamatergic Pathway and a Marker for Dopamine Cells Neuroprotected in Parkinson’s Disease. Sci Rep. 2016 Dec;6(1):35203.
34. Poulin J-F, Caronia G, Hofer C, Cui Q, Helm B, Ramakrishnan C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018 Sep;21(9):1260–71.
35. Thiele SL, Warre R, Nash JE. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson’s Disease. JoVE. 2012 Feb 14;(60):3234.
36. Tan Y, Williams EA, Lancia AJ, Zahm DS. On the altered expression of tyrosine hydroxylase and calbindin-D 28kD immunoreactivities and viability of neurons in the ventral tegmental area of Tsai following injections of 6-hydroxydopamine in the medial forebrain bundle in the rat. Brain Research. 2000 Jun;869(1–2):56–68.
37. Rentsch P, Stayte S, Morris GP, Vissel B. Time dependent degeneration of the nigrostriatal tract in mice with 6-OHDA lesioned medial forebrain bundle and the effect of activin A on l-Dopa induced dyskinesia. BMC Neurosci. 2019 Dec;20(1):5.
38. Heuer A, Smith GA, Lelos MJ, Lane EL, Dunnett SB. Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites. Behavioural Brain Research. 2012 Mar;228(1):30–43.
39. Dumas S, Wallén-Mackenzie Å. Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification. Front Cell Dev Biol. 2019 Nov 28;7:307.