[1] Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365, 785-799. https://doi.org/10.1016/S0140-6736(05)17987-2
[2] Bibbins-Domingo K, Grossman DC, Curry SJ, Barry MJ, Davidson KW, Doubeni CA, et al (2017) Screening for Preeclampsia: US Preventive Services Task Force Recommendation Statement. JAMA 317, 1661-1667. https://doi.org/10.1001/jama.2017.3439
[3] Zhang Z, Li H, Zhang L, Jia L, Wang P (2013) Differential expression of beta-catenin and Dickkopf-1 in the third trimester placentas from normal and preeclamptic pregnancies: a comparative study. Reprod Biol Endocrinol 11, 17. https://doi.org/10.1186/1477-7827-11-17
[4] Wang X, Zhang Z, Zeng X, Wang J, Zhang L, Song W, et al (2018) Wnt/beta-catenin signaling pathway in severe preeclampsia. J Mol Histol 49, 317-327. https://doi.org/10.1007/s10735-018-9770-7
[5] Zhang Z, Wang X, Zhang L, Shi Y, Wang J, Yan H (2017)Wnt/beta-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep 16, 1007-1013. https://doi.org/10.3892/mmr.2017.6718
[6] Li Y, Cui S, Shi W, Yang B, Yuan Y, Yan S, et al (2020) Differential placental methylation in preeclampsia, preterm and term pregnancies. Placenta 93, 56-63. https://doi.org/10.1016/j.placenta.2020.02.009
[7] Zhang Z, Zhang L, Zhang L, Jia L, Wang P, Gao Y (2013) Association of Wnt2 and sFRP4 expression in the third trimester placenta in women with severe preeclampsia. Reprod Sci 20, 981-989. https://doi.org/10.1177/1933719112472740
[8] Hirata H, Hinoda Y, Nakajima K, Kawamoto K, Kikuno N, Ueno K, et al (2011) Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer 128, 1793-1803. https://doi.org/10.1002/ijc.25507
[9] Sonderegger S, Pollheimer J, Knofler M (2010) Wnt signalling in implantation, decidualisation and placental differentiation--review. Placenta 31, 839-847. https://doi.org/10.1016/j.placenta.2010.07.011
[10] Kestler HA, Kuhl M (2008) From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci 363, 1333-1347. https://doi.org/10.1098/rstb.2007.2251
[11] Nusse R, Clevers H (2017) Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
[12] Sonderegger S, Husslein H, Leisser C, Knofler M (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28 Suppl A, S97-S102. https://doi.org/10.1016/j.placenta.2006.11.003
[13] Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, et al (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. Embo J 18, 2401-2410. https://doi.org/10.1093/emboj/18.9.2401
[14] Thevenod F, Chakraborty PK (2010) The role of Wnt/beta-catenin signaling in renal carcinogenesis: lessons from cadmium toxicity studies. Curr Mol Med 10, 387-404. https://doi.org/10.2174/156652410791316986
[15] Jho E, Zhang T, Domon C, Joo C, Freund J, Costantini F (2002) Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Mol Cell Biol 22, 1172-1183. https://doi.org/10.1128/MCB.22.4.1172-1183.2002
[16] Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11, 233-240. https://doi.org/10.1016/s0955-0674(99)80031-3
[17] Zhang L, Leng M, Li Y, Yuan Y, Yang B, Li Y, et al (2019) Altered DNA methylation and transcription of WNT2 and DKK1 genes in placentas associated with early-onset preeclampsia. Clin Chim Acta 490, 154-160. https://doi.org/10.1016/j.cca.2018.12.026
[18] Ye Y, Tang Y, Xiong Y, Feng L, Li X (2019) Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. Faseb J 33, 2732-2742. https://doi.org/10.1096/fj.201800934RRR
[19] Zhang L, Li W, Song W, Ran Y, Yuan Y, Jia L, et al (2018) Detection of WNT2B, WIF1 and beta-catenin expression in preeclampsia by placenta tissue microarray. Clin Chim Acta 487, 179-185. https://doi.org/10.1016/j.cca.2018.09.031
[20] Ujita M, Kondoh E, Chigusa Y, Mogami H, Kawasaki K, Kiyokawa H, et al (2018) Impaired Wnt5a signaling in extravillous trophoblasts: Relevance to poor placentation in early gestation and subsequent preeclampsia. Pregnancy Hypertens 13, 225-234. https://doi.org/10.1016/j.preghy.2018.06.022
[21] (2013) Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol 122, 1122-1131. https://doi.org/10.1097/01.AOG.0000437382.03963.88
[22] Rana S, Lemoine E, Granger JP, Karumanchi SA (2019) Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res 124, 1094-1112. https://doi.org/10.1161/CIRCRESAHA.118.313276
[23] Herzog EM, Eggink AJ, Reijnierse A, Kerkhof MA, de Krijger RR, Roks AJ, et al (2017) Impact of early- and late-onset preeclampsia on features of placental and newborn vascular health. Placenta 49, 72-79. https://doi.org/10.1016/j.placenta.2016.11.014
[24] Khodzhaeva ZS, Kogan YA, Shmakov RG, Klimenchenko NI, Akatyeva AS, Vavina OV, et al (2016) Clinical and pathogenetic features of early- and late-onset pre-eclampsia. J Matern Fetal Neonatal Med 29, 2980-2986. https://doi.org/10.3109/14767058.2015.1111332
[25] Wilson SL, Robinson WP (2018) Utility of DNA methylation to assess placental health. Placenta 64 Suppl 1, S23-S28. https://doi.org/10.1016/j.placenta.2017.12.013
[26] Chu T, Bunce K, Shaw P, Shridhar V, Althouse A, Hubel C, et al (2014) Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta. Plos One 9, e107318. https://doi.org/10.1371/journal.pone.0107318
[27] Novakovic B, Yuen RK, Gordon L, Penaherrera MS, Sharkey A, Moffett A, et al (2011) Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. Bmc Genomics 12, 529. https://doi.org/10.1186/1471-2164-12-529
[28] Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, et al (2017) A83-01 inhibits TGF-beta-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 163, 449-460. https://doi.org/10.1007/s10549-017-4211-y
[29] Voloshanenko O, Erdmann G, Dubash TD, Augustin I, Metzig M, Moffa G, et al (2013) Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nat Commun 4, 2610. https://doi.org/10.1038/ncomms3610
[30] Tang Z, Cai H, Wang R, Cui Y (2018) Overexpression of CD300A inhibits progression of NSCLC through downregulating Wnt/beta-catenin pathway. Onco Targets Ther 11, 8875-8883. https://doi.org/10.2147/OTT.S185521
[31] Xing Z, Wang HY, Su WY, Liu YF, Wang XX, Zhan P, et al (2018) Wnt3 knockdown sensitizes human non-small cell type lung cancer (NSCLC) cells to cisplatin via regulating the cell proliferation and apoptosis. Eur Rev Med Pharmacol Sci 22, 1323-1332. https://doi.org/10.26355/eurrev_201803_14474
[32] Wang HS, Nie X, Wu RB, Yuan HW, Ma YH, Liu XL, et al (2016) Downregulation of human Wnt3 in gastric cancer suppresses cell proliferation and induces apoptosis. Onco Targets Ther 9, 3849-3860. https://doi.org/10.2147/OTT.S101782
[33] Chu Y, Fan W, Guo W, Zhang Y, Wang L, Guo L, et al (2017) miR-1247-5p functions as a tumor suppressor in human hepatocellular carcinoma by targeting Wnt3. Oncol Rep 38, 343-351. https://doi.org/10.3892/or.2017.5702
[34] Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, et al (2008) Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 48, 780-791. https://doi.org/10.1016/j.jhep.2007.12.020
[35] Krivega M, Essahib W, Van de Velde H (2015) WNT3 and membrane-associated beta-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod 21, 711-722. https://doi.org/10.1093/molehr/gav036
[36] Kaloglu C, Bulut HE, Hamutoglu R, Korkmaz EM, Onder O, Dagdeviren T, et al (2020) Wingless ligands and beta-catenin expression in the rat endometrium: The role of Wnt3 and Wnt7a/beta-catenin pathway at the embryo-uterine interface. Mol Reprod Dev 87, 1159-1172. https://doi.org/10.1002/mrd.23423
[37] Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, et al (2012) Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 10, 1597-1606. https://doi.org/10.1158/1541-7786.MCR-12-0155-T
[38] Liu J, Xue N, Guo Y, Niu K, Gao L, Zhang S, et al (2019) CircRNA_100367 regulated the radiation sensitivity of esophageal squamous cell carcinomas through miR-217/Wnt3 pathway. Aging (Albany NY) 11, 12412-12427. https://doi.org/10.18632/aging.102580
[39] Chen YY, Chen Y, Wang WC, Tang Q, Wu R, Zhu WH, et al (2019) Cyclin D1 regulates osteoarthritis chondrocyte apoptosis via WNT3/beta-catenin signalling. Artif Cells Nanomed Biotechnol 47, 1971-1977. https://doi.org/10.1080/21691401.2019.1593853
[40] Liu L, Sun L, Zheng J, Wang Y (2018) Silencing BRIT1 Facilitates the Abilities of Invasiveness and Migration in Trophoblast Cells. Med Sci Monit 24, 7451-7458. https://doi.org/10.12659/MSM.910229
[41] Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, et al (2014) Expression patterns of WNT/beta-CATENIN signaling molecules during human tooth development. J Mol Histol 45, 487-496. https://doi.org/10.1007/s10735-014-9572-5
[42] Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al (2003) Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 17, 394-409. https://doi.org/10.1101/gad.1044903
[43] Basu S, Arya SP, Usmani A, Pradhan BS, Sarkar RK, Ganguli N, et al (2018) Defective Wnt3 expression by testicular Sertoli cells compromise male fertility. Cell Tissue Res 371, 351-363. https://doi.org/10.1007/s00441-017-2698-5
[44] Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al (2016) The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry 6, e892. https://doi.org/10.1038/tp.2016.122