1. Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. (2020) doi:10.1093/jtm/taaa021.
2. Wang, D. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
3. Cucinotta, D. & Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 91, 157–160 (2020).
4. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. & Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020).
5. Yang, D. & Leibowitz, J. L. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. Virus Res. 206, 120–133 (2015).
6. WHO. WHO Coronavirus (COVID-19) Dashboard. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. WHO 1–5 (2021).
7. Lim, J. et al. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci. 35, 1–6 (2020).
8. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).
9. Aruleba, R. T., Adekiya, T. A., Oyinloye, B. E. & Kappo, A. P. Structural Studies of Predicted Ligand Binding Sites and Molecular Docking Analysis of Slc2a4 as a Therapeutic Target for the Treatment of Cancer. Int. J. Mol. Sci. 19, (2018).
10. Ojo, O. A. et al. Deciphering the interaction of puerarin with cancer macromolecules: An in silico investigation. J. Biomol. Struct. Dyn. 0, 1–12 (2020).
11. Cazarolli, L. et al. Flavonoids: Prospective Drug Candidates. Mini-Reviews Med. Chem. 8, 1429–1440 (2008).
12. Harborne, J. B. & Williams, C. A. Advances in flavonoid research since 1992. Phytochemistry 22, 481–505 (2000).
13. Costa, A. N., de Sá, É. R. A., Bezerra, R. D. S., Souza, J. L. & Lima, F. das C. A. Constituents of buriti oil (Mauritia flexuosa L.) like inhibitors of the SARS-Coronavirus main peptidase: an investigation by docking and molecular dynamics. J. Biomol. Struct. Dyn. (2020) doi:10.1080/07391102.2020.1778538.
14. Das, S., Sarmah, S., Lyndem, S. & Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 0, 1–11 (2020).
15. Ghosh, R., Chakraborty, A., Biswas, A. & Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 0, 1–13 (2020).
16. Umesh, U., Kundu, D., Selvaraj, C., Singh, S. K. & Dubey, V. K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn. 0, 1–7 (2020).
17. Soleimani, T., Keyhanfar, M., Piri, K. & Hasanloo, T. Morphological evaluation of hairy roots induced in Artemisia annua L. and investigating elicitation effects on the hairy roots biomass production. Int. J. Agric. Res. Rev. 2, 1005–1013 (2012).
18. Zanjani, K. E. et al. Physiological Response of Sweet Wormwood to Salt Stress under Salicylic Acid Application and Non Application Condition. Life Sci. J. 9, 4190–4195 (2012).
19. Huang, L., Xie, C., Duan, B. & Chen, S. Mapping the potential distribution of high artemisinin-yielding Artemisia annua L. (Qinghao) in China with a geographic information system. Chin. Med. 5, 1–8 (2010).
20. Emadi. Phytochemistry of Artemisia annua. (2013).
21. Lutgen, P. La tisane d’artemisia annua, une puissante polythérapie ! Mal. Trop. Asp. Humanit. Sci. 25, 6–7 (2009).
22. Nkuitchou-Chougouo, R. D. K. et al. Comparative study of chemical composition of Artemisia annua Essential oil growing wild in Western Cameroon and Luxembourg by µ-CTE/TD/GC/MS. North Asian Int. Res. J. Res. J. Consort. 2, (2016).
23. Li, S. Y. et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 67, 18–23 (2005).
24. Brown, G. D. Two new compounds from artemisia annua. J. Nat. Prod. 55, 1756–1760 (1992).
25. Brisibe, E. A. et al. Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. Food Chem. 115, 1240–1246 (2009).
26. Lai, J. P., Lim, Y. H., Su, J., Shen, H. M. & Ong, C. N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 848, 215–225 (2007).
27. Bhakuni, R. S., Jain, D. C., Sharma, R. P. & Kumar, S. Secondary metabolites of Artemisia annua and their biological activity. Curr. Sci. 80, 35–48 (2001).
28. Meng, X.-Y., Zhang, H.-X., Mezei, M. & Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided-Drug Des. 7, 146–157 (2012).
29. Gupta, M. K. et al. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. J. Biomol. Struct. Dyn. 39, 2617–2627 (2020).
30. Ojo, Oluwafemi Adeleke et al. Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer’s Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches. Molecules 26, 1996 (2021).
31. Bhattacharya, M. et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J. Med. Virol. 92, 618–631 (2020).
32. Adegboyega, A. E., Johnson, T. O. & Omale, S. Computational Modelling of the Pharmacological actions of some anti-viral agents against SARS-CoV-2. in Data Science for COVID-19 (eds. Kose, U., Gupta, D., Albuquerque, V. de & Khanna, A.) 467–482 (Elsevier, 2021).
33. Alonso, H., Bliznyuk, A. A. & Gready, J. E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 26, 531–568 (2006).
34. Wang, G. & Zhu, W. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Med. Chem. 8, (2016).
35. Suárez, D. & Díaz, N. SARS-CoV-2 Main Protease: A Molecular Dynamics Study. J. Chem. Inf. Model. 60, 5815–5831 (2020).
36. Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol. 7, 412–419 (2004).
37. Imran, M. et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 24, 1–16 (2019).
38. Schwarz, S. et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 80, 177–182 (2014).
39. Ahmadian, R., Rahimi, R. & Bahramsoltani, R. Kaempferol: An encouraging flavonoid for COVID-19. Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 19, 492–494 (2020).
40. Xia, S. et al. The important herbal pair for the treatment of COVID-19 and its possible mechanisms. Chinese Med. (United Kingdom) 16, 1–16 (2021).
41. Kikiowo, B., Ogunleye, J. A., Iwaloye, O. & Ijatuyi, T. T. Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. J. Biomol. Struct. Dyn. 0, 1–12 (2020).
42. Elekofehinti, O. O. et al. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol. Divers. (2020) doi:10.1007/s11030-020-10151-w.
43. Iwaloye, O., Elekofehinti, O. O., Momoh, A. I., Babatomiwa, K. & Ariyo, E. O. In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Netw. Model. Anal. Heal. Informatics Bioinforma. 9, 54 (2020).
44. Iwaloye, O., Elekofehinti, O. O., Oluwarotimi, E. A., Kikiowo, B. iwa & Fadipe, T. M. Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. Silico Pharmacol. 8, 1–13 (2020).
45. Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80-. ). 368, 409–412 (2020).
46. Jin, Z. et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293 (2020).
47. Cheng, S. C., Chang, G. G. & Chou, C. Y. Mutation of glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys. J. 98, 1327–1336 (2010).
48. Lanzarotti, E., Defelipe, L. A., Marti, M. A. & Turjanski, A. G. Aromatic clusters in protein-protein and protein-drug complexes. J. Cheminform. 12, 1–9 (2020).
49. Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus 2, 1–11 (2013).
50. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 64, 4–17 (2012).
51. Testa, B. & Krämer, S. D. The biochemistry of drug metabolism - An introduction part 5. Metabolism and bioactivity. Chem. Biodivers. 6, 591–684 (2009).
52. Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 1–13 (2017).
53. Olsson, M. H. M., SØndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. J. Chem. Theory Comput. 7, 525–537 (2011).
54. Johnson, T. O. et al. Computational study of the therapeutic potentials of a new series of imidazole derivatives against SARS-CoV-2. J. Pharmacol. Sci. 1–10 (2021) doi:10.1016/j.jphs.2021.05.004.