1. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. The Lancet. 2019;393(10172):689-701.
2. Miziak B, Blaszczyk B, Chroscinska-Krawczyk M, Danilkiewicz G, Jagiello-Wojtowicz E, Czuczwar SJ. The problem of osteoporosis in epileptic patients taking antiepileptic drugs. Expert Opin Drug Saf. 2014;13(7):935-46. doi:10.1517/14740338.2014.919255.
3. Mini S, Kalpana D, Mohammed KPA, Bindusha S, Parameswaran PJ, Vasumathy AMA et al. Vitamin D Deficiency in Ambulant Children on Carbamazepine or Sodium Valproate Monotherapy. Indian Pediatrics. 2018;55(4):307-10.
4. Voudris KA, Attilakos A, Katsarou E, Garoufi A, Dimou S, Skardoutsou A et al. Early alteration in bone metabolism in epileptic children receiving carbamazepine monotherapy owing to the induction of hepatic drug-metabolizing enzymes. Journal of Child Neurology. 2005;20(6):513.
5. Zhong R, Chen Q, Zhang X, Li M, Lin W. Bone Mineral Density Loss in People With Epilepsy Taking Valproate as a Monotherapy: A Systematic Review and Meta-Analysis. Frontiers in Neurology. 2019;10:1171-.
6. Aksoy A, S?nmez FM, Deger O, Hosver IN, Karagüzel G. The effects of antiepileptic drugs on the relationships between leptin levels and bone turnover in prepubertal children with epilepsy. J Pediatr Endocrinol Metab. 2011;24(9-10):703-8.
7. McCorry D. Effect of antiepileptic drugs on bone density in ambulatory patients. Neurology. 2004;62(2):342; author reply doi:10.1212/wnl.62.2.342-a.
8. Lee H, Wang S, Salter D, Wang C, Chen S, Fan H. The impact of the use of antiepileptic drugs on the growth of children. BMC pediatrics. 2013;13:211. doi:10.1186/1471-2431-13-211.
9. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nature medicine. 2005;11(1):71-6. doi:10.1038/nm1160.
10. Akhoundi M, Sheikhzadeh S, Mirhashemi A, Ansari E, Kheirandish Y, Allaedini M et al. Decreased bone density induced by antiepileptic drugs can cause accelerated orthodontic tooth movement in male Wistar rats. International orthodontics. 2018;16(1):73-81. doi:10.1016/j.ortho.2018.01.021.
11. Fan H, Lee H, Chang K, Lee Y, Lai H, Hung P et al. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. International journal of molecular sciences. 2016;17(8). doi:10.3390/ijms17081242.
12. Parveen B, Tiwari A, Jain M, Pal S, Chattopadhyay N, Tripathi M et al. The anti-epileptic drugs valproate, carbamazepine and levetiracetam cause bone loss and modulate Wnt inhibitors in normal and ovariectomised rats. Bone. 2018;113:57-67. doi:10.1016/j.bone.2018.05.011.
13. Erbayat Altay E, Serdaroğlu A, Tümer L, Gücüyener K, Hasanoğlu A. Evaluation of bone mineral metabolism in children receiving carbamazepine and valproic acid. Journal of pediatric endocrinology & metabolism : JPEM. 2000;13(7):933-9. doi:10.1515/jpem.2000.13.7.933.
14. Akin R, Okutan V, Sarici U, Altunbas A, Gökçay E. Evaluation of bone mineral density in children receiving antiepileptic drugs. Pediatric neurology. 1998;19(2):129-31. doi:10.1016/s0887-8994(98)00039-3.
15. Zhou D, Chen Y, Yin J, Tao S, Guo S, Wei Z et al. Valproic acid prevents glucocorticoid‑induced osteonecrosis of the femoral head of rats. International journal of molecular medicine. 2018;41(6):3433-47. doi:10.3892/ijmm.2018.3534.
16. Rocha S, Ferraz R, Prudêncio C, Fernandes M, Costa-Rodrigues J. Differential effects of antiepileptic drugs on human bone cells. Journal of cellular physiology. 2019;234(11):19691-701. doi:10.1002/jcp.28569.
17. Ji Y, Ke Y, Gao S. Intermittent activation of notch signaling promotes bone formation. American journal of translational research. 2017;9(6):2933-44.
18. Tao ZS, Lv YX, Cui W, Huang ZL, Tu KK, Zhou Q et al. Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr. 2016;49(5):423-8. doi:10.1007/s00391-015-0949-1.
19. Tao ZS, Wu XJ, Zhou WS, Wu XJ, Liao W, Yang M et al. Local administration of aspirin with beta-tricalcium phosphate/poly-lactic-co-glycolic acid (beta-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab. 2019;37(6):1026-35. doi:10.1007/s00774-019-01008-w.
20. Li YF, Li XD, Bao CY, Chen QM, Zhang H, Hu J. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1-34) and zoledronic acid adsorbed onto the implant surface. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2013;24(3):1063-71. doi:10.1007/s00198-012-2258-5.
21. Gabet Y, Kohavi D, Kohler T, Baras M, Müller R, Bab I. Trabecular bone gradient in rat long bone metaphyses: mathematical modeling and application to morphometric measurements and correction of implant positioning. Journal of Bone and Mineral Research. 2008;23(1):48-57.
22. Tao ZS, Zhou WS, Xu HG, Yang M. Simvastatin can enhance the osseointegration of titanium rods in ovariectomized rats maintenance treatment with valproic acid. Biomed Pharmacother. 2020;132:110745. doi:10.1016/j.biopha.2020.110745.
23. Tao ZS, Lu HL, Ma NF, Zhang RT, Li Y, Yang M et al. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatr. 2020;53(7):671-8. doi:10.1007/s00391-019-01659-4.
24. Tao ZS, Zhou WS, Wu XJ, Zhang X, Wang L, Xie JB et al. Prevention of ovariectomy-induced osteoporosis in rats : Comparative study of zoledronic acid, parathyroid hormone (1-34) and strontium ranelate. Z Gerontol Geriatr. 2019;52(2):139-47. doi:10.1007/s00391-018-1376-x.
25. Tao ZS, Zhou WS, Xu HG, Yang M. Parathyroid hormone (1-34) can reverse the negative effect of valproic acid on the osseointegration of titanium rods in ovariectomized rats. J Orthop Translat. 2021;27:67-76. doi:10.1016/j.jot.2020.10.006.
26. Farrokhi E, GhatrehSamani K, Hashemzadeh Chaleshtori M, Tabatabaiefar M. Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells. Iranian biomedical journal. 2015;19(3):160-4. doi:10.7508/ibj.2015.03.005.
27. Li Z, Liu C, Xie Z, Song P, Zhao R, Guo L et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PloS one. 2011;6(6):e20526. doi:10.1371/journal.pone.0020526.
28. Cabrera D, Kruger M, Wolber F, Roy N, Fraser K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC musculoskeletal disorders. 2020;21(1):349. doi:10.1186/s12891-020-03362-7.
29. Zhang R, Yang M, Li Y, Liu H, Ren M, Tao ZS. Effect of alendronate on the femoral metaphyseal defect under carbamazepine in ovariectomized rats. J Orthop Surg Res. 2021;16(1):14. doi:10.1186/s13018-020-02151-1.
30. Tao ZS, Zhou WS, Xu HG, Yang M. Aspirin modified strontium-doped beta-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother. 2020;132:110911. doi:10.1016/j.biopha.2020.110911.
31. Nissen-Meyer L, Svalheim S, Taubøll E, Gjerstad L, Reinholt F, Jemtland R. How can antiepileptic drugs affect bone mass, structure and metabolism? Lessons from animal studies. Seizure. 2008;17(2):187-91. doi:10.1016/j.seizure.2007.11.024.
32. Bouxsein M, Boyd S, Christiansen B, Guldberg R, Jepsen K, Müller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2010;25(7):1468-86. doi:10.1002/jbmr.141.
33. Guerra J, Hanes M, Rasa C, Loganathan N, Innis-Whitehouse W, Gutierrez E et al. Modulation of bone turnover by Cissus quadrangularis after ovariectomy in rats. Journal of bone and mineral metabolism. 2019;37(5):780-95. doi:10.1007/s00774-018-0983-3.
34. Ortinau L, Linden M, Dirkes R, Rector R, Hinton P. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats. Bone. 2017;103:188-99. doi:10.1016/j.bone.2017.07.010.
35. Rachner T, Khosla S, Hofbauer L. Osteoporosis: now and the future. Lancet (London, England). 2011;377(9773):1276-87. doi:10.1016/s0140-6736(10)62349-5.
36. Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2021;32(1):145-56. doi:10.1007/s00198-020-05728-y.
37. Zhang S, Huo S, Li H, Tang H, Nie B, Qu X et al. Flufenamic acid inhibits osteoclast formation and bone resorption and act against estrogen-dependent bone loss in mice. International immunopharmacology. 2020;78:106014. doi:10.1016/j.intimp.2019.106014.
38. Yuan X, Bi Y, Yan Z, Pu W, Li Y, Zhou K. Psoralen and Isopsoralen Ameliorate Sex Hormone Deficiency-Induced Osteoporosis in Female and Male Mice. BioMed research international. 2016;2016:6869452. doi:10.1155/2016/6869452.
39. Tanaka S, Matsumoto T. Sclerostin: from bench to bedside. Journal of bone and mineral metabolism. 2020. doi:10.1007/s00774-020-01176-0.
40. Fabre S, Funck-Brentano T, Cohen-Solal M. Anti-Sclerostin Antibodies in Osteoporosis and Other Bone Diseases. Journal of clinical medicine. 2020;9(11). doi:10.3390/jcm9113439.
41. AlMuraikhi N, Ali D, Vishnubalaji R, Manikandan M, Atteya M, Siyal A et al. Notch Signaling Inhibition by LY411575 Attenuates Osteoblast Differentiation and Decreased Ectopic Bone Formation Capacity of Human Skeletal (Mesenchymal) Stem Cells. Stem cells international. 2019;2019:3041262. doi:10.1155/2019/3041262.
42. Cui J, Zhang W, Huang E, Wang J, Liao J, Li R et al. BMP9-induced osteoblastic differentiation requires functional Notch signaling in mesenchymal stem cells. Laboratory investigation; a journal of technical methods and pathology. 2019;99(1):58-71. doi:10.1038/s41374-018-0087-7.
43. Sun L, Qian Q, Sun G, Mackey LV, Fuselier JA, Coy DH et al. Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide–drug conjugate via activating somatostatin receptor type II. Journal of drug targeting. 2016;24(2):169.
44. Stockhausen, M-T, Sjölund, Manetopoulos, Axelson. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. British journal of cancer. 2005.
45. Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G et al. Histone Deacetylase Inhibition with Valproic Acid Downregulates Osteocalcin Gene Expression in Human Dental Pulp Stem Cells and Osteoblasts: Evidence for HDAC2 Involvement. Stem cells. 2014;32(1):279-89.