[1] Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend. 2017;180:156-70. doi:10.1016/j.drugalcdep.2017.08.003.
[2] Lacagnina MJ, Rivera PD, Bilbo SD. Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology. 2017;42:156-77. doi:10.1038/npp.2016.121.
[3] Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA, et al. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict Biol. 2016;21:895-903. doi:10.1111/adb.12261.
[4] Cunningham CL, Gremel CM, Groblewski PA. Drug-induced conditioned place preference and aversion in mice. Nat Protoc. 2006;1:1662-70. doi:10.1038/nprot.2006.279.
[5] Merkel SF, Andrews AM, Lutton EM, Razmpour R, Cannella LA, Ramirez SH. Dexamethasone Attenuates the Enhanced Rewarding Effects of Cocaine Following Experimental Traumatic Brain Injury. Cell Transplant. 2017;26:1178-92. doi:10.1177/0963689717714341.
[6] Pati D, Pina MM, Kash TL. Ethanol-induced conditioned place preference and aversion differentially alter plasticity in the bed nucleus of stria terminalis. Neuropsychopharmacology. 2019;44:1843-54. doi:10.1038/s41386-019-0349-0.
[7] Garcia-Perez D, Ferenczi S, Kovacs KJ, Victoria Milanes M. Distinct regulation pattern of Egr-1, BDNF and Arc during morphine-withdrawal conditioned place aversion paradigm: Role of glucocorticoids. Behavioural Brain Research. 2019;360:244-54. doi:10.1016/j.bbr.2018.12.026.
[8] Song XH, Li WQ, Shi YZ, Zhang JD, Li Y. Expression of protein kinase A and the kappa opioid receptor in selected brain regions and conditioned place aversion in morphine-dependent rats. Oncotarget. 2017;8:82632-42. doi:10.18632/oncotarget.19671.
[9] Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402-9. doi:10.1016/j.tips.2006.06.005.
[10] Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry. 2016;55:2821-31. doi:10.1021/acs.biochem.6b00142.
[11] Leung K. 1-(2-Chlorophenyl)-N-[(11)C]methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide. Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD): National Center for Biotechnology Information (US); 2004.
[12] Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304-19. doi:10.1007/s00259-008-0908-9.
[13] Boutin H, Prenant C, Maroy R, Galea J, Greenhalgh AD, Smigova A, et al. [18F]DPA-714: direct comparison with [11C]PK11195 in a model of cerebral ischemia in rats. PLoS One. 2013;8:e56441. doi:10.1371/journal.pone.0056441.
[14] Boutin H, Murray K, Pradillo J, Maroy R, Smigova A, Gerhard A, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging. 2015;42:503-11. doi:10.1007/s00259-014-2939-8.
[15] Desjardins S, Belkai E, Crete D, Cordonnier L, Scherrmann JM, Noble F, et al. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells. Neuropharmacology. 2008;55:1347-54. doi:10.1016/j.neuropharm.2008.08.027.
[16] Zhao Y, Zhang J, Yang H, Cui D, Song J, Ma Q, et al. Memory retrieval in addiction: a role for miR-105-mediated regulation of D1 receptors in mPFC neurons projecting to the basolateral amygdala. BMC Biol. 2017;15:128. doi:10.1186/s12915-017-0467-2.
[17] Chen M, Shao D, Fu Y, Ma Q, Chen M, Cui D, et al. Key determinants for morphine withdrawal conditioned context-induced increase in Arc expression in anterior cingulate cortex and withdrawal memory retrieval. Exp Neurol. 2019;311:234-46. doi:10.1016/j.expneurol.2018.10.009.
[18] Xie F, Xi Y, Pascual JM, Muzik O, Peng F. Age-dependent changes of cerebral copper metabolism in Atp7b (-/-) knockout mouse model of Wilson's disease by [(64)Cu]CuCl(2)-PET/CT. Metab Brain Dis. 2017;32:717-26. doi:10.1007/s11011-017-9956-9.
[19] Jiang D, Lu X, Li Z, Rydberg N, Zuo C, Peng F, et al. Increased Vesicular Monoamine Transporter 2 (VMAT2) and Dopamine Transporter (DAT) Expression in Adolescent Brain Development: A Longitudinal Micro-PET/CT Study in Rodent. Front Neurosci. 2018;12:1052. doi:10.3389/fnins.2018.01052.
[20] Verhaeghe J, Wyffels L, Wyckhuys T, Stroobants S, Staelens S. Rat brain normalization templates for robust regional analysis of [11C]ABP688 positron emission tomography/computed tomography. Mol Imaging. 2014;13. doi:10.2310/7290.2014.00037.
[21] Huang Q, Nie B, Ma C, Wang J, Zhang T, Duan S, et al. Stereotaxic (18)F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain. J Neurosci Methods. 2018;293:105-16. doi:10.1016/j.jneumeth.2017.09.006.
[22] Nie B, Liu H, Chen K, Jiang X, Shan B. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain. PLoS One. 2014;9:e108295. doi:10.1371/journal.pone.0108295.
[23] Paxinos. G, Watson C. The Rat Brain in Stereotaxic Coordinates - The New Coronal Set 5th Edition ed: Academic Press; 2004.
[24] Deussing M, Blume T, Vomacka L, Mahler C, Focke C, Todica A, et al. Data on specificity of [(18)F]GE180 uptake for TSPO expression in rodent brain and myocardium. Data Brief. 2018;19:331-6. doi:10.1016/j.dib.2018.04.133.
[25] Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun. 2009;23:240-50. doi:10.1016/j.bbi.2008.09.012.
[26] Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF, Mousseau M, et al. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat Med. 2017;23:355-60. doi:10.1038/nm.4281.
[27] Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Amirgholami N, Houshmand G, Alboghobeish S. Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide. Metab Brain Dis. 2020;35:305-13. doi:10.1007/s11011-019-00491-4.
[28] Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268-75. doi:10.1001/jamapsychiatry.2014.2427.
[29] Tyler RE, Kim SW, Guo M, Jang YJ, Damadzic R, Stodden T, et al. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: A comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci. 2019;50:1831-42. doi:10.1111/ejn.14392.
[30] Walker MD, Dinelle K, Kornelsen R, Lee NV, Miao Q, Adam M, et al. [11C]PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J Cereb Blood Flow Metab. 2015;35:1331-8. doi:10.1038/jcbfm.2015.54.
[31] Auvity S, Saba W, Goutal S, Leroy C, Buvat I, Cayla J, et al. Acute Morphine Exposure Increases the Brain Distribution of [18F]DPA-714, a PET Biomarker of Glial Activation in Nonhuman Primates. Int J Neuropsychopharmacol. 2017;20:67-71. doi:10.1093/ijnp/pyw077.
[32] Keller T, Lopez-Picon FR, Krzyczmonik A, Forsback S, Kirjavainen AK, Takkinen JS, et al. [(18)F]F-DPA for the detection of activated microglia in a mouse model of Alzheimer's disease. Nucl Med Biol. 2018;67:1-9. doi:10.1016/j.nucmedbio.2018.09.001.
[33] Farahmandfar M, Karimian SM, Naghdi N, Zarrindast MR, Kadivar M. Morphine-induced impairment of spatial memory acquisition reversed by morphine sensitization in rats. Behav Brain Res. 2010;211:156-63. doi:10.1016/j.bbr.2010.03.013.
[34] Han H, Dong Z, Jia Y, Mao R, Zhou Q, Yang Y, et al. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci Rep. 2015;5:9666. doi:10.1038/srep09666.
[35] Froudarakis E, Fahey PG, Reimer J, Smirnakis SM, Tehovnik EJ, Tolias AS. The Visual Cortex in Context. Annu Rev Vis Sci. 2019;5:317-39. doi:10.1146/annurev-vision-091517-034407.
[36] Hanlon CA, Dowdle LT, Naselaris T, Canterberry M, Cortese BM. Visual cortex activation to drug cues: a meta-analysis of functional neuroimaging papers in addiction and substance abuse literature. Drug Alcohol Depend. 2014;143:206-12. doi:10.1016/j.drugalcdep.2014.07.028.
[37] Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci. 2018;373. doi:10.1098/rstb.2017.0028.
[38] Millan EZ, Ong Z, McNally GP. Paraventricular thalamus: Gateway to feeding, appetitive motivation, and drug addiction. Prog Brain Res. 2017;235:113-37. doi:10.1016/bs.pbr.2017.07.006.
[39] Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C, Bouvier J, et al. Midbrain circuits that set locomotor speed and gait selection. Nature. 2018;553:455-60. doi:10.1038/nature25448.
[40] Moeller SJ, Tomasi D, Woicik PA, Maloney T, Alia-Klein N, Honorio J, et al. Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice. Addict Biol. 2012;17:1013-25. doi:10.1111/j.1369-1600.2012.00440.x.
[41] Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology. 2005;30:90-8. doi:10.1038/sj.npp.1300487.
[42] Chao OY, de Souza Silva MA, Yang YM, Huston JP. The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev. 2020;113:373-407. doi:10.1016/j.neubiorev.2020.04.007.
[43] Li H, Sagar AP, Keri S. Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:1-7. doi:10.1016/j.pnpbp.2017.12.011.
[44] Jiang X, Ni Y, Liu T, Zhang M, Ren H, Xu G. Inhibition of LPS-induced retinal microglia activation by naloxone does not prevent photoreceptor death. Inflammation. 2013;36:42-52. doi:10.1007/s10753-012-9518-6.
[45] Anttila JE, Albert K, Wires ES, Mätlik K, Loram LC, Watkins LR, et al. Post-stroke Intranasal (+)-Naloxone Delivery Reduces Microglial Activation and Improves Behavioral Recovery from Ischemic Injury. eNeuro. 2018;5. doi:10.1523/eneuro.0395-17.2018.
[46] Biswas L, Farhan F, Reilly J, Bartholomew C, Shu X. TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells. Int J Mol Sci. 2018;19. doi:10.3390/ijms19123740.
[47] Bobzean SA, DeNobrega AK, Perrotti LI. Sex differences in the neurobiology of drug addiction. Exp Neurol. 2014;259:64-74. doi:10.1016/j.expneurol.2014.01.022.
[48] Fattore L, Melis M. Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addict Biol. 2016;21:1043-51. doi:10.1111/adb.12381.