[1.] Ma, S., Attarwala, I. Y., & Xie, X. (2019). SQSTM1 / p62 : A Potential Target for Neurodegenerative Disease [Review-article]. ACS Chemical Neuroscience, 10, 2094–2114. https://doi.org/10.1021/acschemneuro.8b00516
[2.] Bartolome, F., Esteras, N., Martin-requero, A., & Boutoleau-, C. (2017). impair energy metabolism through limitation of mitochondrial substrates. Scientific Reports, (November 2016), 1–14. https://doi.org/10.1038/s41598-017-01678-4
[3.] Bitto, A., Lerner, C. A., Nacarelli, T., Crowe, E., Torres, C., & Sell, C. (2014). p62/SQSTM1 at the interface of aging, autophagy, and disease. Age, 36(3), 1123–1137. https://doi.org/10.1007/s11357-014-9626-3
[4.] Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., Liu, H. F. (2016). P62 Links the Autophagy Pathway and the Ubiqutin-Proteasome System Upon Ubiquitinated Protein Degradation. Cellular and Molecular Biology Letters, 21(1), 1–14. https://doi.org/10.1186/s11658-016-0031-z
[5.] Matsumoto, G., Shimogori, T., Hattori, N., & Nukina, N. (2015). TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Human Molecular Genetics, 24(15), 4429–4442. https://doi.org/10.1093/hmg/ddv179
[6.] Liang, X., & Guan, X. (2017). Frontiers in Laboratory Medicine p62 / SQSTM1 : A potential molecular target for treatment of atherosclerosis. Frontiers in Laboratory Medicine, 1(2), 104 https://doi.org/10.1016/j.flm.2017.06.007
[7.] Hou, B., Wang, G., Gao, Q., Wei, Y., Zhang, C., & Wang, Y. (2019). SQSTM1 / p62 losreverses the inhibitory effect of sunitinib on autophagy independent of AMPK signaling. Scientific Reports, (June 2018), 1–13. https://doi.org/10.1038/s41598-019-47597-4
[8.] Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3), 279–296. https://doi.org/10.4161/auto.7.3.14487
[9.] Pankiv, S., Hoyvarde Clausen, T., Lamark, T., Brech, A., Brunn, J.-A., Outzen, H., Johansen, (2007). p62 / SQSTM1 Binds Directly to Atg8 / LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates. J Biol Chem, 282(33), 24131–24145. https://doi.org/10.1074/jbc.M702824200
[10.] Bartlett, B. J., Isakson, P., Lewerenz, J., Sanchez, H., Kotzebue, R. W., Cumming, R.,Finley,K (2011). p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy, 7(6), 572–583. https://doi.org/10.4161/auto.7.6.14943
[11.] Castro, I P De, Costa, A. C., Celardo, I., Tufi, R., Dinsdale, D., Loh, S. H. Y., & Martins, L. M. (2013). Drosophila ref (2)P is required for the parkin -mediated suppression of mitochondrial dysfunction in pink1 mutants. Cell Death and Disease, 4, e873. https://doi.org/10.1038/cddis.2013.394
[12.] Narendra, D. P., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J. (2010).p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6(8), 1090–1106. https://doi.org/10.4161/auto.6.8.13426
[13.] Xiao, B., Deng, X., Lim, G. G. Y., Zhou, W., Saw, W., Dong, Z., Tan, E. (2017). BBA Molecular Cell Research p62-Mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. BBA - Molecular Cell Research, 1864(7), 1308–1317. https://doi.org/10.1016/j.bbamcr.2017.04.009
[14.] Castro, I Pimenta De, Costa, A. C., Lam, D., Tufi, R., Fedele, V., Moisoi, N., Martins, L. M. (2012). Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death and Differentiation, 19, 1308–1316. https://doi.org/10.1038/cdd.2012.5