[1] Food and Agriculture Oranization of the United Nations. Fishery and aquaculture statistics yearbook. Rome; 2016.
[2] Rao Y, Su J. Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res. 2015; 2015: 670437.
[3] Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat Genet. 2015; 47(6): 625-31.
[4] He L, Zhang A, Pei Y, Chu P, Li Y, Huang R, et al. Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics. 2017; 18(1):452.
[5] Ji J, Rao Y, Wan Q, Liao Z, Su J. Teleost-Specific TLR19 Localizes to Endosome, Recognizes dsRNA, Recruits TRIF, Triggers both IFN and NF-κB Pathways, and Protects Cells from Grass Carp Reovirus Infection. J Immunol. 2018; 200(2): 573-585.
[6] Xue Y, Jiang X, Gao J, Li X, Xu J, Wang J, et al. Functional characterisation of interleukin 34 in grass carp Ctenopharyngodon idella. Fish Shellfish Immunol. 2019; 92: 91-100.
[7] Shen Y, Wang L, Fu J, Xu X, Yue GH, Li J. Population structure, demographic history and local adaptation of the grass carp. BMC Genomics. 2019; 20(1): 467.
[9] Chen G, Xiong L, Wang Y, He L, Huang R, Liao L, et al. Different responses in one-year-old and three-year-old grass carp reveal the mechanism of age restriction of GCRV infection Fish Shellfish Immunol. 2019; 86:702-712.
[10] Chan YH, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology. 2017, 152(4):545-555.
[11] Verpoest S, Cay B, Favoreel H, De Regge N. Age-Dependent Differences in Pseudorabies Virus Neuropathogenesis and Associated Cytokine Expression. J Virol. 2017; 91(2): e02058-16.
[12] Wu AG, Pruijssers AJ, Brown JJ, Stencel-Baerenwald JE, Sutherland DM, Iskarpatyoti JA, et al. Age-dependent susceptibility to reovirus encephalitis in mice is influenced by maturation of the type-I interferon response. Pediatr Res. 2018; 83(5): 1057-1066.
[13] Smith CA, Kulkarni U, Chen J, Goldstein DR. Influenza virus inoculum volume is critical to elucidate age-dependent mortality in mice. Aging Cell. 2019; 18(2): e12893.
[14] Giraldo D, Wilcox DR, Longnecker R. The Type I Interferon Response and Age-Dependent Susceptibility to Herpes Simplex Virus Infection. DNA Cell Biol. 2017; 36(5): 329-334.
[15] Jaramillo D, Hick P, Whittington RJ. Age dependency of nervous necrosis virus infection in barramundi Lates calcarifer (Bloch). J Fish Dis. 2017; 40(8): 1089-1101.
[16] Emmenegger EJ, Sanders GE, Conway CM, Binkowski FP, Winton JR, Kurath G. Experimental infection of six North American fish species with the North Carolina strain of Spring Viremia of Carp Virus. Aquaculture. 2016; 450: 273-282.
[17] Dong W, Yin X, Sun L, Wang J, Sun S, Zhu G, et al. Age-associated methylation change of TAP1 promoter in piglet. Gene. 2015; 573(1): 70-4.
[18] Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes inimmune response and transcriptional regulator genes. Sci Rep. 2015; 5: 13107.
[19] Zykovich A, Hubbard A, Flynn JM, Tarnopolsky M, Fraga MF, Kerksick C, et al. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell. 2014; 13(2): 360-6.
[20] Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015; 14(6): 924-32.
[21] Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNAmethylation in the human genome. Nat Genet. 2007; 39(4): 457-66.
[22] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009; 462(7271): 315-22.
[23] Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNAmethylation maps of pluripotent and differentiated cells. Nature. 2008; 454(7205): 766-70.
[24] Li J, Li R, Wang Y, Hu X, Zhao Y, Li L, et al. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq. BMC Genomics. 2015; 16: 851.
[25] Zhang Y, Liu J, Fu W, Xu W, Zhang H, Chen S, et al. Comparative Transcriptome and DNA methylation analyses of the molecular mechanisms underlying skin color variations in Crucian carp (Carassius carassius L.). BMC Genet. 2017; 18(1):95.
[26] Smith G, Smith C, Kenny JG, Chaudhuri RR, Ritchie MG. Genome-wide DNA methylation patterns in wild samples of two morphotypes of threespine stickleback (Gasterosteus aculeatus). Mol Biol Evol. 2015; 32(4): 888-95.
[27] Artemov AV, Mugue NS, Rastorguev SM, Zhenilo S, Mazur AM, Tsygankova SV, et al. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions. Mol Biol Evol. 2017; 34(9): 2203-2213.
[28] Metzger DCH, Schulte PM. The DNA Methylation Landscape of Stickleback Reveals Patterns of Sex Chromosome Evolution and Effects of Environmental Salinity. Genome Biol Evol. 2018; 10(3):775-785.
[29] Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet. 2019; 10: 184.
[30] Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, et al. Epigenetic modification and inheritance in sexual reversal of fish. Genome Res. 2014; 24(4): 604-15.
[31] Wan ZY, Xia JH, Lin G, Wang L, Lin VC, Yue GH. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia. Sci Rep. 2016; 6: 35903.
[32] Shang X, Yang C, Wan Q, Rao Y, Su J. The destiny of the resistance/susceptibility against GCRV is controlled by epigenetic mechanisms in CIK cells. Sci Rep. 2017; 7(1): 4551.
[33] Xiu Y, Shao C, Zhu Y, Li Y, Gan T, Xu W, et al. Differences in DNA Methylation Between Disease-Resistant and Disease-Susceptible Chinese Tongue Sole (Cynoglossus semilaevis) Families. Front Genet. 2019; 10: 847.
[34] Jin L, Jiang Z, Xia Y, Lou P, Chen L, Wang H, et al. Genome-wide DNA methylation changes in skeletal muscle between young and middle-aged pigs. BMC Genomics. 2014; 15: 653.
[35] Murphy PJ, Cairns BR. Genome-wide DNA methylation profiling in zebrafish. Methods Cell Biol. 2016; 135: 345-59.
[36] Zhang B, Ban D, Gou X, Zhang Y, Yang L, Chamba Y, et al. Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. J Anim Sci Biotechnol. 2019; 10: 25.
[37] Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975; 187(4173): 226-32.
[38] Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010; 328(5980): 916-9.
[39] Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008; 452(7184): 215-9.
[40] Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010; 20(3): 320-31.
[41] Gensous N, Bacalini MG, Franceschi C, Meskers CGM, Maier AB, Garagnani P. Age-Related DNA Methylation Changes: Potential Impact on Skeletal Muscle Aging in Humans. Front Physiol. 2019; 10: 996.
[42] Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019; 195: 172-185.
[43] Kochmanski J, Marchlewicz EH, Cavalcante RG, Sartor MA, Dolinoy DC. Age-related epigenome-wide DNA methylation and hydroxymethylation in longitudinal mouse blood. Epigenetics. 2018; 13(7): 779-792.
[44] Wang X, Bhandari RK. DNA Methylation Dynamics During Epigenetic Reprogramming of Medaka Embryo. Epigenetics. 2019; 14(6): 611-622.
[45] Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013; 341(6146): 1237905.
[46] Li Y, Jia A, Wang Y, Dong L, Wang Y, He Y, et al. Immune effects of glycolysis or oxidative phosphorylation metabolic pathway in protecting against bacterial infection. J Cell Physiol. 2019; 234(11): 20298-20309.
[47] Frederick M, Skinner HD, Kazi SA, Sikora AG, Sandulache VC. High expression of oxidative phosphorylation genes predicts improved survival in squamous cell carcinomas of the head and neck and lung. Sci Rep. 2020; 10(1): 6380.
[48] Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011; 27(11): 1571-2.
[49] Park Y, Wu H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 2016; 32(10): 1446-53.
[50] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010; 11(2): R14.
[52] Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015; 12(4): 357-60.
[51] Xie C, Mao X, Huang J, et al. KOBAS 2.0: web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011; 39: W316-322.
[53] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5): 511-5.
[54] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Bio. 2010; 11(10): R106.