1. Anderson, J. L. & Gutmann, D. H. Neurofibromatosis type 1. in Handbook of Clinical Neurology vol. 132 75–86 (Elsevier B.V., 2015).
2. Rasmussen, S. A. & Friedman, J. M. NF1 gene and neurofibromatosis 1. American Journal of Epidemiology vol. 151 33–40 (2000).
3. Miraglia, E. et al. Cutaneous manifestations in neurofibromatosis type 1. Clin. Ter. 171, e371–e377 (2020).
4. Kinori, M., Hodgson, N. & Zeid, J. L. Ophthalmic manifestations in neurofibromatosis type 1. Survey of Ophthalmology vol. 63 518–533 (2018).
5. Moramarco, A. et al. Retinal microvascular abnormalities in neurofibromatosis type 1. Br. J. Ophthalmol. 103, 1590–1594 (2019).
6. Moramarco, A. et al. Hyperpigmented spots at fundus examination: a new ocular sign in Neurofibromatosis Type I. Orphanet J. Rare Dis. 16, (2021).
7. Moramarco, A. et al. Ocular surface involvement in patients with neurofibromatosis type 1 syndrome. Graefe’s Arch. Clin. Exp. Ophthalmol. 258, 1757–1762 (2020).
8. Cohen, M. E. & Duffner, P. K. Visual-evoked responses in children with optic gliomas, with and without neurofibromatosis. Pediatr. Neurosurg. 10, 99–111 (1983).
9. North, K., Cochineas, C., Tang, E. & Fagan, E. Optic gliomas in neurofibromatosis type 1: Role of visual evoked potentials. Pediatr. Neurol. 10, 117–123 (1994).
10. Iannaccone, A. et al. Visual evoked potentials in children with neurofibromatosis type 1. Doc. Ophthalmol. 105, 63–81 (2002).
11. Nebbioso, M. et al. Neurofibromatosis type 1: Ocular electrophysiological and perimetric anomalies. Eye Brain 12, 119–127 (2020).
12. Hegedus, B. et al. Optic nerve dysfunction in a mouse model of neurofibromatosis-1 optic glioma. J. Neuropathol. Exp. Neurol. 68, 542–551 (2009).
13. Abed, E. et al. Functional loss of the inner retina in childhood optic gliomas detected by photopic negative response. Investig. Ophthalmol. Vis. Sci. 56, 2469–2474 (2015).
14. Sutter, E. E. & Tran, D. The field topography of ERG components in man-I. The photopic luminance response. Vision Res. 32, 433–446 (1992).
15. National Institutes of Health Consensus Development Conference Statement: neurofibromatosis. Bethesda, Md., USA, July 13-15, 1987. in Neurofibromatosis vol. 1 172–178 (1988).
16. Hood, D. C. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 124, 1–13 (2012).
17. Marmor, M. F. et al. ISCEV Standard for full-field clinical electroretinography (2008 update). in Documenta Ophthalmologica vol. 118 69–77 (Doc Ophthalmol, 2009).
18. Hoffmann, M. B. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2021 update). Doc. Ophthalmol. 142, 5–16 (2021).
19. Vagge, A. et al. Choroidal abnormalities in neurofibromatosis type 1 detected by near-infrared reflectance imaging in paediatric population. Acta Ophthalmol. 93, e667–e671 (2015).
20. Moramarco, A. et al. Near-infrared imaging: an in vivo, non-invasive diagnostic tool in neurofibromatosis type 1. Graefe’s Arch. Clin. Exp. Ophthalmol. 256, 307–311 (2018).
21. Moramarco, A., Giustini, S., Miraglia, E. & Sacchetti, M. SD-OCT in NIR modality to diagnose retinal microvascular abnormalities in neurofibromatosis type 1. Graefe’s Archive for Clinical and Experimental Ophthalmology vol. 256 1789–1790 (2018).
22. Tsang, A. C. et al. The Diagnostic Utility of Multifocal Electroretinography in Detecting Chloroquine and Hydroxychloroquine Retinal Toxicity. Am. J. Ophthalmol. 206, 132–139 (2019).
23. Moschos, M. M. et al. Correlation between optical coherence tomography and multifocal electroretinogram fndings with visual acuity in retinitis pigmentosa. Clin. Ophthalmol. 7, 2073–2078 (2013).
24. Kaneko, M., Machida, S., Hoshi, Y. & Kurosaka, D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 40, 77–86 (2015).
25. Nebbioso, M., Livani, M. L., Steigerwalt, R. D., Panetta, V. & Rispoli, E. Retina in rheumatic diseases: Standard full field and multifocal electroretinography in hydroxychloroquine retinal dysfunction. Clin. Exp. Optom. 94, 276–283 (2011).
26. Ohshima, A., Hasegawa, S., Takada, R., Takagi, M. & Abe, H. Multifocal electroretinograms in patients with branch retinal artery occlusion. Jpn. J. Ophthalmol. 45, 516–522 (2001).
27. Abdel-Kader, M. & El-Dessouky, W. M. Multifocal electroretinogram in retinal vein occlusion. Saudi J. Ophthalmol. 24, 125–132 (2010).
28. Lyons, J. S. & Severns, M. L. Detection of Early Hydroxychloroquine Retinal Toxicity Enhanced by Ring Ratio Analysis of Multifocal Electroretinography. Am. J. Ophthalmol. 143, (2007).
29. Dolan, F. M., Parks, S., Hammer, H. & Keating, D. The wide field multifocal electroretinogram reveals retinal dysfunction in early retinitis pigmentosa [12]. British Journal of Ophthalmology vol. 86 480–481 (2002).
30. Nebbioso, M., Grenga, R. & Karavitis, P. Early detection of macular changes with multifocal ERG in patients on antimalarial drug therapy. J. Ocul. Pharmacol. Ther. 25, 249–258 (2009).
31. Gölemez, H., Yıldırım, N. & Özer, A. Is multifocal electroretinography an early predictor of glaucoma? Doc. Ophthalmol. 132, 27–37 (2016).
32. Lubiński, W. et al. Electro-oculogram in patients with neurofibromatosis type 1. Doc. Ophthalmol. 103, 91–103 (2001).
33. Lubiński, W. et al. Supernormal Electro-Oculograms in Patients with Neurofibromatosis Type 1. Hered. Cancer Clin. Pract. 2, 193 (2004).
34. Perlman I. The electroretinogram: ERG by IDO Perlman. Webvision: The Organization of the Retina and. 2015. - Search Results - PubMed. https://pubmed.ncbi.nlm.nih.gov/?term=Perlman+I.+The+electroretinogram%3A+ERG+by+IDO+Perlman.+Webvision%3A+The+Organization+of+the+Retina+and.+2015.
35. Brown, J. A., Gianino, S. M. & Gutmann, D. H. Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J. Neurosci. 30, 5579–5589 (2010).
36. Astakhova, L. A., Kapitskii, S. V., Govardovskii, V. I. & Firsov, M. L. Cyclic AMP as a regulator of the phototransduction cascade. Neuroscience and Behavioral Physiology vol. 44 664–671 (2014).
37. Nadim, W. D. et al. Physical interaction between neurofibromin and serotonin 5-HT6 receptor promotes receptor constitutive activity. Proc. Natl. Acad. Sci. U. S. A. 113, 12310–12315 (2016).
38. Kurosawa, A. & Kurosawa, H. Ovoid Bodies in Choroidal Neurofibromatosis. Arch. Ophthalmol. 100, 1939–1941 (1982).
39. Klein, R. M. & Glassman, L. Neurofibromatosis of the choroid. American Journal of Ophthalmology vol. 99 367–368 (1985).
40. Abdolrahimzadeh, S. et al. Morphologic and vasculature features of the choroid and associated choroid-retinal thickness alterations in neurofibromatosis type 1. Br. J. Ophthalmol. 99, 789–793 (2015).
41. Ayata, A., Ünal, M., Ersanli, D. & Tatlipinar, S. Near infrared fluorescence and OCT features of choroidal abnormalities in type 1 neurofibromatosis. Clin. Exp. Ophthalmol. 36, 390–392 (2008).
42. Rao, R. C. & Choudhry, N. Enhanced depth imaging spectral-domain optical coherence tomography findings in choroidal neurofibromatosis. Ophthalmic Surg. Lasers Imaging Retin. 45, 466–468 (2014).
43. Ueda-Consolvo, T., Miyakoshi, A., Ozaki, H., Houki, S. & Hayashi, A. Near-infrared fundus autofluorescence-visualized melanin in the choroidal abnormalities of neurofibromatosis type 1. Clin. Ophthalmol. 6, 1191–1194 (2012).
44. Byun, Y. S. & Park, Y. H. Indocyanine green angiographic findings of obscure choroidal abnormalities in neurofibromatosis. Korean J. Ophthalmol. 26, 230–234 (2012).
45. Abdolrahimzadeh, S. et al. Retinal microvascular abnormalities overlying choroidal nodules in neurofibromatosis type 1. BMC Ophthalmol. 14, (2014).
46. Kumar, V. & Singh, S. Multimodal imaging of choroidal nodules in neurofibromatosis type-1. Indian J. Ophthalmol. 66, 586–588 (2018).
47. Hood, D. C. Assessing retinal function with the multifocal technique. Progress in Retinal and Eye Research vol. 19 607–646 (2000).