[1] Doshi D, Limdi P, Parekh N, et al (2017) A Comparative Study to Assess the Predictability of Different IOL Power Calculation Formulas in Eyes of Short and Long Axial Length. J Clin Diagn Res. 11(1): C1-C4. doi: 10.7860/JCDR/2017/22095.9136
[2] Lundstrom M, Barry P, Henry Y, et al (2012) Evidence-based guidelines for cataract surgery: guidelines based on data in the European Registry of Quality Outcomes for Cataract and Refractive Surgery database. J Cataract Refract Surg. 38(6): 1086–1093. doi: 10.1016/j.jcrs.2012.03.006
[3] McBrien N A, Gentle A (2003) Role of the sclera in the development and pathological complications of myopia. PROG RETIN EYE RES. 22(3): 307–338. doi: 10.1016/s1350-9462(02)00063-0
[4] Wang L, Shirayama M, Ma X J, et al (2011) Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 37(11): 2018–2027. doi: 10.1016/j.jcrs.2011.05.042
[5] Hoffer K J, Savini G (2017) Effect of Gender and Race on Ocular Biometry. Int Ophthalmol Clin. 57(3): 137–142. doi: 10.1097/IIO.0000000000000180
[6] Carney L G, Mainstone J C, Henderson B A (1997) Corneal topography and myopia. A cross-sectional study. Invest Ophthalmol Vis Sci. 38(2): 311–320. doi
[7] Savini G, Hoffer K J, Barboni P (2015) Influence of corneal asphericity on the refractive outcome of intraocular lens implantation in cataract surgery. J Cataract Refract Surg. 41(4): 785–789. doi: 10.1016/j.jcrs.2014.07.035
[8] Arba M S (2015) Influence of corneal asphericity on refractive outcomes after cataract surgery. J Cataract Refract Surg. 41(8): 1797–1798. doi: 10.1016/j.jcrs.2015.05.021
[9] Hoffer K J, Aramberri J, Haigis W, et al (2015) Protocols for studies of intraocular lens formula accuracy. AM J OPHTHALMOL. 160(3): 403–405. doi: 10.1016/j.ajo.2015.05.029
[10] Zhang J, Tan X, Wang W, et al (2020) Effect of Axial Length Adjustment Methods on Intraocular Lens Power Calculation in Highly Myopic Eyes. AM J OPHTHALMOL. 214: 110–118. doi: 10.1016/j.ajo.2020.02.023
[11] Reitblat O, Levy A, Kleinmann G, et al (2017) Intraocular lens power calculation for eyes with high and low average keratometry readings: Comparison between various formulas. J Cataract Refract Surg. 43(9): 1149–1156. doi: 10.1016/j.jcrs.2017.06.036
[12] Hoffer K J, Savini G (2020) Update on Intraocular Lens Power Calculation Study Protocols: The Better Way to Design and Report Clinical Trials. OPHTHALMOLOGY. doi: 10.1016/j.ophtha.2020.07.005
[13] Melles R B, Holladay J T, Chang W J (2018) Accuracy of Intraocular Lens Calculation Formulas. OPHTHALMOLOGY. 125(2): 169–178. doi: 10.1016/j.ophtha.2017.08.027
[14] Cheng H, Wang L, Kane J X, et al(2020)Accuracy of Artificial Intelligence Formulas and Axial Length Adjustments for Highly Myopic Eyes. AM J OPHTHALMOL. 223: 100–107. doi: 10.1016/j.ajo.2020.09.019
[15] Rong X, He W, Zhu Q, et al (2019) Intraocular lens power calculation in eyes with extreme myopia: Comparison of Barrett Universal II, Haigis, and Olsen formulas. J Cataract Refract Surg. 45(6): 732–737. doi: 10.1016/j.jcrs.2018.12.025
[16] Bang S, Edell E, Yu Q, et al (2011) Accuracy of Intraocular Lens Calculations Using the IOLMaster in Eyes with Long Axial Length and a Comparison of Various Formulas. OPHTHALMOLOGY. 118(3): 503–506. doi: 10.1016/j.ophtha.2010.07.008
[17] Liao X, Peng Y, Liu B, et al (2020) Agreement of ocular biometric measurements in young healthy eyes between IOLMaster 700 and OA-2000. Sci Rep. 10(1): 3134. doi: 10.1038/s41598-020-59919-y
[18] Hua Y, Qiu W, Xiao Q, et al (2018) Precision (repeatability and reproducibility) of ocular parameters obtained by the Tomey OA-2000 biometer compared to the IOLMaster in healthy eyes. PLOS ONE. 13(2): e193023. doi: 10.1371/journal.pone.0193023
[19] Kane J X, Melles R B (2020) Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopter. J Cataract Refract Surg. doi: 10.1097/j.jcrs.0000000000000235
[20] Wan K H, Lam T C H, Yu M C V, et al (2019) Accuracy and Precision of Intraocular Lens Calculations Using the New Hill-RBF Version 2.0 in Eyes With High Axial Myopia. AM J OPHTHALMOL. 205: 66–73. doi: 10.1016/j.ajo.2019.04.019
[21] Minami K, Kataoka Y, Matsunaga J, et al (2012) Ray-tracing intraocular lens power calculation using anterior segment optical coherence tomography measurements. J Cataract Refract Surg. 38(10): 1758–1763. doi: 10.1016/j.jcrs.2012.05.035
[22] Zhang Z, Miao Y, Fang X, et al (2018) Accuracy of the Haigis and SRK/T Formulas in Eyes Longer than 29.0 mm and the Influence of Central Corneal Keratometry Reading. CURR EYE RES. 43(11): 1316–1321. doi: 10.1080/02713683.2018.1488265
[23] Oh J H, Kim S H, Chuck R S, et al (2014) Evaluation of the Pentacam ray tracing method for the measurement of central corneal power after myopic photorefractive keratectomy. CORNEA. 33(3): 261–265. doi: 10.1097/ICO.0000000000000034
[24] Abulafia A, Barrett G D, Rotenberg M, et al (2015) Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: comparison of formulas and methods. J Cataract Refract Surg. 41(3): 548–556. doi: 10.1016/j.jcrs.2014.06.033
[25] Voytsekhivskyy O V (2018) Development and Clinical Accuracy of a New Intraocular Lens Power Formula (VRF) Compared to Other Formulas. AM J OPHTHALMOL. 185: 56–67. doi: 10.1016/j.ajo.2017.10.020
[26] Olsen T, Hoffmann P (2014) C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg. 40(5): 764–773. doi: 10.1016/j.jcrs.2013.10.037
[27] Iijima K, Kamiya K, Iida Y, et al (2020) Comparison of Predictability Using Barrett Universal II and SRK/T Formulas according to Keratometry. J OPHTHALMOL. 2020: 7625725. doi: 10.1155/2020/7625725
[28] Roggla V, Langenbucher A, Leydolt C, et al (2020) Accuracy of common IOL power formulas in 611 eyes based on axial length and corneal power ranges. Br J Ophthalmol. doi: 10.1136/bjophthalmol-2020-315882
[29] Faramarzi A, Aghajani A, Ghiasian L (2017) Accuracy of Various Intraocular Lens Power Calculation Formulas in Steep Corneas. J Ophthalmic Vis Res. 12(4): 385–389. doi: 10.4103/jovr.jovr_20_17
[30] Sheard R M, Smith G T, Cooke D L (2010) Improving the prediction accuracy of the SRK/T formula: the T2 formula. J Cataract Refract Surg. 36(11): 1829–1834. doi: 10.1016/j.jcrs.2010.05.031
[31] Eom Y, Kang S Y, Song J S, et al (2013) Use of corneal power-specific constants to improve the accuracy of the SRK/T formula. OPHTHALMOLOGY. 120(3): 477–481. doi: 10.1016/j.ophtha.2012.09.008
[32] Abulafia A, Barrett G D, Koch D D, et al (2016) Protocols for Studies of Intraocular Lens Formula Accuracy. AM J OPHTHALMOL. 164: 149–150. doi: 10.1016/j.ajo.2016.01.010
[33] Zhang J Q, Zou X Y, Zheng D Y, et al (2019) Effect of lens constants optimization on the accuracy of intraocular lens power calculation formulas for highly myopic eyes. Int J Ophthalmol. 12(6): 943–948. doi: 10.18240/ijo.2019.06.10
[34] Aristodemou P, Knox C N, Sparrow J M, et al (2011) Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg. 37(1): 50–62. doi: 10.1016/j.jcrs.2010.07.037