1. Hoegh-Guldberg, O. et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. Science 318, 1737–1742 (2007).
2. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).
3. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).
4. Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, (2009).
5. Descombes, P. et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change. Glob. Change Biol. 21, 2479–2487 (2015).
6. Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).
7. Hoeke, R. K., Jokiel, P. L., Buddemeier, R. W. & Brainard, R. E. Projected Changes to Growth and Mortality of Hawaiian Corals over the Next 100 Years. PLOS ONE 6, e18038 (2011).
8. Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).
9. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
10. Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Glob. Change Biol. 24, 5084–5095 (2018).
11. Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).
12. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169 (2011).
13. Barkley, H. C. et al. Changes in coral reef communities across a natural gradient in seawater pH. Sci. Adv. 1, e1500328 (2015).
14. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
15. Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change 1, 308–312 (2011).
16. Camp, E. F. et al. Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci. Rep. 7, 2434 (2017).
17. Jury, C. P. & Toonen, R. J. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc. R. Soc. B Biol. Sci. 286, 20190614 (2019).
18. Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473–483 (2008).
19. Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 12829 (2019).
20. Dove, S. G., Brown, K. T., Van Den Heuvel, A., Chai, A. & Hoegh-Guldberg, O. Ocean warming and acidification uncouple calcification from calcifier biomass which accelerates coral reef decline. Commun. Earth Environ. 1, 1–9 (2020).
21. Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl. Acad. Sci. 110, 15342–15347 (2013).
22. Carpenter, R. C., Lantz, C. A., Shaw, E. & Edmunds, P. J. Responses of coral reef community metabolism in flumes to ocean acidification. Mar. Biol. 165, 66 (2018).
23. Comeau, S., Carpenter, R. C., Lantz, C. A. & Edmunds, P. J. Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12, 365–372 (2015).
24. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
25. Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189 (2006).
26. Jury, C. P., Thomas, F. I. M., Atkinson, M. J. & Toonen, R. J. Buffer Capacity, Ecosystem Feedbacks, and Seawater Chemistry under Global Change. Water 5, 1303–1325 (2013).
27. Bahr, K. D., Tran, T., Jury, C. P. & Toonen, R. J. Abundance, size, and survival of recruits of the reef coral Pocillopora acuta under ocean warming and acidification. PLOS ONE 15, e0228168 (2020).
28. Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, (2018).
29. Shamberger, K. E. F. et al. Calcification and organic production on a Hawaiian coral reef. Mar. Chem. 127, 64–75 (2011).
30. Albright, R. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature 555, 516–519 (2018).
31. Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).
32. Jury, C. P., Whitehead, R. F. & Szmant, A. M. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob. Change Biol. 16, 1632–1644 (2010).
33. Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. Seasonal and annual calcification rates of the Hawaiian reef coral, Montipora capitata, under present and future climate change scenarios. ICES J. Mar. Sci. 74, 1083–1091 (2017).
34. Schoepf, V. et al. Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLOS ONE 8, e75049 (2013).
35. Jury, C. P., Delano, M. N. & Toonen, R. J. High heritability of coral calcification rates and evolutionary potential under ocean acidification. Sci. Rep. 9, 20419 (2019).
36. Langdon, C. et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob. Biogeochem. Cycles 14, 639–654 (2000).
37. Orte, M. R. de et al. Unexpected role of communities colonizing dead coral substrate in the calcification of coral reefs. Limnol. Oceanogr. 66, 1793–1803 (2021).
38. Fisher, R. et al. Species Richness on Coral Reefs and the Pursuit of Convergent Global Estimates. Curr. Biol. 25, 500–505 (2015).
39. Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. 112, 2076–2081 (2015).
40. Ransome, E. et al. The importance of standardization for biodiversity comparisons: A case study using autonomous reef monitoring structures (ARMS) and metabarcoding to measure cryptic diversity on Mo’orea coral reefs, French Polynesia. PLOS ONE 12, e0175066 (2017).
41. Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. (In press).
42. Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).
43. Hughes, T. P. et al. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Curr. Biol. 17, 360–365 (2007).
44. Kennedy, E. V. et al. Avoiding Coral Reef Functional Collapse Requires Local and Global Action. Curr. Biol. 23, 912–918 (2013).
45. Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).
46. Storlazzi, C. D., Cheriton, O. M., van Hooidonk, R., Zhao, Z. & Brainard, R. Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Sci. Rep. 10, 13435 (2020).
47. Chaidez, V., Dreano, D., Agusti, S., Duarte, C. M. & Hoteit, I. Decadal trends in Red Sea maximum surface temperature. Sci. Rep. 7, 8144 (2017).
48. McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).
49. Bathen, K. A descriptive study of the physical oceanography of Kane’ohe Bay. in (1968).
50. Guadayol, Ò., Silbiger, N. J., Donahue, M. J. & Thomas, F. I. M. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef. PLOS ONE 9, e85213 (2014).
51. Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements. https://repository.oceanbestpractices.org/handle/11329/249 (2007).
52. OCADS - Program Developed for CO2 System Calculations. https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/CO2SYS/co2rprt.html.
53. Riddle, D. Product Review: Maxi-Jet Pro Series Pumps. Reefs.com https://reefs.com/magazine/product-review-maxi-jet-pro-series-pumps/.
54. Gorospe, K. D. et al. Local Biomass Baselines and the Recovery Potential for Hawaiian Coral Reef Fish Communities. Front. Mar. Sci. 5, (2018).
55. Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. McB. Zooplankton, Planktivorous Fish, and Water Currents on a Windward Reef Face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
56. Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).
57. Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a Decade of Change in Spatial and Temporal Dynamics of Hawaiian Coral Reef Communities1. Pac. Sci. 69, 1–13 (2015).
58. Franklin, E. C., Jokiel, P. L. & Donahue, M. J. Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121–132 (2013).
59. Forsman, Z. H., Barshis, D. J., Hunter, C. L. & Toonen, R. J. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol. Biol. 9, 45 (2009).
60. Boulay, J. N., Hellberg, M. E., Cortés, J. & Baums, I. B. Unrecognized coral species diversity masks differences in functional ecology. Proc. R. Soc. B Biol. Sci. 281, 20131580 (2014).
61. Veron, J. E. N., Stafford-Smith, M. G., Turak, E. & DeVantier, L. M. Corals of the World,. (2016).
62. Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 316 (2011).
63. Darling, E. S., Alvarez‐Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).
64. NOAA Coral Reef Watch. NOAA Coral Reef Watch Version 3.1 Daily Global 5-km Satellite Coral Bleaching Degree Heating Week Product. (2018).
65. Cros, A., Toonen, R. J., Davies, S. W. & Karl, S. A. Population genetic structure between Yap and Palau for the coral Acropora hyacinthus. PeerJ 4, e2330 (2016).
66. Cros, A., Toonen, R. J., Donahue, M. J. & Karl, S. A. Connecting Palau’s marine protected areas: a population genetic approach to conservation. Coral Reefs 36, 735–748 (2017).
67. Concepcion, G. T., Polato, N. R., Baums, I. B. & Toonen, R. J. Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv. Genet. Resour. 2, 11–15 (2010).
68. Faircloth, B. C. & Glenn, T. C. Not All Sequence Tags Are Created Equal: Designing and Validating Sequence Identification Tags Robust to Indels. PLOS ONE 7, e42543 (2012).
69. Meirmans, P. GenoDive version 2.b14.
70. Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).
71. Meirmans, P. G. & Tienderen, P. H. V. genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).
72. Polato, N. R., Concepcion, G. T., Toonen, R. J. & Baums, I. B. Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Mol. Ecol. 19, 4661–4677 (2010).
73. Gorospe, K. D. & Karl, S. A. Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736 (2013).
74. Gorospe, K. D., Donahue, M. J. & Karl, S. A. The importance of sampling design: spatial patterns and clonality in estimating the genetic diversity of coral reefs. Mar. Biol. 162, 917–928 (2015).
75. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
76. Lenth, R. V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
77. R Core Team. R: A language and environment for statistical computing. (2018).
78. Nakajima, R. et al. Planktonic trophic structure in a coral reef ecosystem – Grazing versus microbial food webs and the production of mesozooplankton. Prog. Oceanogr. 156, 104–120 (2017).
79. Jokiel, P. L., Maragos, J. E., Franzisket, L., Stoddart, D. R. & Johannes, R. E. Coral reefs: research methods. Coral growth: buoyant weight technique. UNESCO Paris 529–541 (1978).
80. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
81. Andersson, A. J. et al. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: Mesocosm-scale experimental evidence. Biogeosciences vol. 6 13 (2009).
82. Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Biol. Ecol. 479, 60–68 (2016).
83. Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).
84. Levas, S. et al. Organic carbon fluxes mediated by corals at elevated pCO2 and temperature. Mar. Ecol. Prog. Ser. 519, 153–164 (2015).
85. Baumann, J., Grottoli, A. G., Hughes, A. D. & Matsui, Y. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage. J. Exp. Mar. Biol. Ecol. 461, 469–478 (2014).
86. Mclachlan, R. Extraction of Total Soluble Lipid from Ground Coral Samples. (2020) doi:10.17504/protocols.io.bc4qiyvw.
87. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
88. Mclachlan, R. Microplate Assay for Quantification of Soluble Protein in Ground Coral Samples. (2020) doi:10.17504/protocols.io.bdc8i2zw.
89. Cunning, R. & Baker, A. C. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 259–262 (2013).
90. Apprill, A. M. & Gates, R. D. Recognizing diversity in coral symbiotic dinoflagellate communities. Mol. Ecol. 16, 1127–1134 (2007).
91. Pochon, X. et al. Comparison of Endosymbiotic and Free-Living Symbiodinium (dinophyceae) Diversity in a Hawaiian Reef Environment1. J. Phycol. 46, 53–65 (2010).
92. LaJeunesse, T. C. & Thornhill, D. J. Improved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping. PLOS ONE 6, e29013 (2011).
93. LaJeunesse, T. C. et al. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23, 596–603 (2004).
94. Okansen, J. et al. vegan: Community ecology package. R package version 2.5. 4. 2019. (2019).
95. Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
96. Timmers, M. A., Vicente, J., Webb, M., Jury, C. P. & Toonen, R. J. Sponging up diversity: Evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environ. DNA n/a,.
97. Vicente, J. et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs (2021) doi:10.1007/s00338-021-02109-7.
98. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
99. Chuang, L.-Y., Cheng, Y.-H. & Yang, C.-H. Specific primer design for the polymerase chain reaction. Biotechnol. Lett. 35, 1541–1549 (2013).
100. Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
101. Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
102. Medina, M., Collins, A. G., Silberman, J. D. & Sogin, M. L. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc. Natl. Acad. Sci. 98, 9707–9712 (2001).
103. Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of Homology of Morphological Characters in Tetractinellid Sponges Based on Molecular Data. Syst. Biol. 47, 351–366 (1998).
104. Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
105. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
106. Basset, Y., Novotny, V., Miller, S. E. & Pyle, R. Quantifying Biodiversity: Experience with Parataxonomists and Digital Photography in Papua New Guinea and Guyana. BioScience 50, 899–908 (2000).
107. Oliver, I. & Beattie, A. J. A Possible Method for the Rapid Assessment of Biodiversity. Conserv. Biol. 7, 562–568 (1993).
108. Farr, T. J., Broom, J., Hart, D. R., Neill, K. & Nelson, W. A. Common coralline algae of northern New Zealand: an identification guide. (2009).
109. Kaleb, S., Alongi, G. & Falace, A. Coralline algae preparatuion for scanning electron microscope and optical microscopy. in Protocols for macroalgae research 411–428 (CRC Press, 2018).
110. Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
111. Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).
112. Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).
113. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1–e1 (2013).
114. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
115. Schloss, P. D. et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
116. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
117. Wang, J. T. L. et al. New Techniques for DNA Sequence Classification. J. Comput. Biol. 6, 209–218 (1999).
118. Tsuda, R. T. & Abbott, I. A. Collection, handling, preservation, and logistics. in Ecological Field Methods: Macroalgae. Handbook of Phycological Methods 67–68 (Cambridge University Press, 1985).
119. Abbott, I. A. Marine red algae of the Hawaiian Islands. (Bishiop Museum Press, 1999).
120. Abbott, I. A. & Huisman, J. M. Marine green and brown algae of the Hawaiian Islands. (Bishiop Museum Press, 2004).
121. Guiry, M. D. & Guiry, G. M. AlgaeBase. AlgaeBase (2008).