1. Bradford, M. A., Fierer, N. & Reynolds, J. F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol.22, 964-974, doi:10.1111/j.1365-2435.2008.01404.x (2008).
2. He, S., Liang, Z., Han, R., Wang, Y. & Liu, G. Soil carbon dynamics during grass restoration on abandoned sloping cropland in the hilly area of the Loess Plateau, China. Catena137, 679-685, doi:https://doi.org/10.1016/j.catena.2015.01.027 (2016).
3. Schuman, G. E., Janzen, H. H. & Herrick, J. E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution116, 391-396, doi:https://doi.org/10.1016/S0269-7491(01)00215-9 (2002).
4. Duan, C. et al. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol. Environ. Saf.156, 106-115, doi:10.1016/j.ecoenv.2018.03.015 (2018).
5. Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem.68, 252-262, doi:10.1016/j.soilbio.2013.10.004 (2014).
6. Luo, L., Meng, H. & Gu, J. D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manage.197, 539-549, doi:10.1016/j.jenvman.2017.04.023 (2017).
7. Zhao, Q., Tang, J., Li, Z. Y., Yang, W. & Duan, Y. C. The influence of soil physico-chemical properties and enzyme activities on soil quality of saline-alkali agroecosystems in western Jilin province, China. Sustainability10, 1529, doi:10.3390/su10051529 (2018).
8. Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem.58, 216-234, doi:10.1016/j.soilbio.2012.11.009 (2013).
9. Ruan, M., Zhang, Y. & Chai, T. Rhizosphere soil microbial properties on tetraena mongolica in the arid and semi-arid regions, China. Int. J. Environ. Heal. R.17, 5142 (2020).
10. Askin, T. & Kizilkaya, R. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. Eur. J. Soil Sci.42, 230-237, doi:10.1016/j.ejsobi.2006.02.002 (2006).
11. Bais et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol.2006,57, 233-266 (2006).
12. Qu, Y. et al. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of northeast China. Sustainability12, 15, doi:10.3390/su122310095 (2020).
13. Salinas-Garcia, J. R. et al. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Tillage Res.66, 143-152, doi:10.1016/s0167-1987(02)00022-3 (2002).
14. Roldán, A., Salinas-García, J. R., Alguacil, M. M. & Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol.30, 11-20, doi:https://doi.org/10.1016/j.apsoil.2005.01.004 (2005).
15. Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol.9, 1333-1352, doi:10.1046/j.1365-2486.2003.00674.x (2003).
16. Rey, A., Petsikos, C., Jarvis, P. G. & Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. (2005).
17. Wang, X., Zhag, Y., Lv, J. & Fan, X. Effect of long term different fertilization on properties of soil organic matter and humic acids. Scientia Agric. Sinica33, 78-84 (2000).
18. Wei, Y. et al. Updated information on soil salinity in a typical oasis agroecosystem and desert-oasis ecotone: Case study conducted along the Tarim River, China. Sci. Total Environ., 135387, doi:https://doi.org/10.1016/j.scitotenv.2019.135387 (2019).
19. Huang, L. H. et al. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J. Agric. Sci.154, 632-646, doi:10.1017/s002185961500057x (2015).
20. Liu, Q., Cui, B. & Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China. Environ. Earth Sci.59, 837-845, doi:10.1007/s12665-009-0079-4 (2009).
21. Lu, Y. & Xu, H. Distribution characteristic of soil organic carbon fraction in different types of wetland in Hongze Lake of China. Sci. World J.2014, 487961, doi:10.1155/2014/487961 (2014).
22. Nitsch, P., Kaupenjohann, M. & Wulf, M. Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany). Geoderma310, 65-76, doi:10.1016/j.geoderma.2017.08.041 (2018).
23. Zhang, Z., Lu, X., Song, X., Guo, Y. & Xue, Z. Soil C, N and P stoichiometry of deyeuxia angustifolia and carex lasiocarpa wetlands in Sanjiang Plain, northeast China. J Soil Sediment.12, 1309-1315, doi:10.1007/s11368-012-0551-8 (2012).
24. Bian, J., Tang, J., Zhang, L., Ma, H. & Zhao, J. Arsenic distribution and geological factors in the western Jilin province, China. J. Geochem. Explor.112, 347-356, doi:10.1016/j.gexplo.2011.10.003 (2012).
25. Zheng, B. Technical guide for soil analysis. (China agriculture press, 2013).
26. Tang, H., Qiu, J., Wang, L., Hu, L. & Ranst, E. V. Modeling soil organic carbon storage and its dynamics in croplands of China. Agr. Sci. China9, 704-712 (2010).
27. Wang, Y., Li, Y., Ye, X., Chu, Y. & Wang, X. Profile storage of organic/inorganic carbon in soil: From forest to desert. Sci. Total Environ.408, 1925-1931, doi:https://doi.org/10.1016/j.scitotenv.2010.01.015 (2010).
28. Wang, S. et al. Carbon Mineralization under Different Saline-Alkali Stress Conditions in Paddy Fields of Northeast China. Sustainability12, 17, doi:10.3390/su12072921 (2020).
29. Junejo et al. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma262, 12-19 (2016).
30. Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry48, 7-20 (2000).
31. Paul, E. A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem.98, 109-126, doi:https://doi.org/10.1016/j.soilbio.2016.04.001 (2016).
32. Solly, E. F., Schoning, I., Herold, N., Trumbore, S. E. & Schrumpf, M. No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant Soil393, 273-282, doi:10.1007/s11104-015-2492-7 (2015).
33. Steinweg, J. M., Kostka, J. E., Hanson, P. J. & Schadt, C. W. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. Soil Biol. Biochem.125, 244-250, doi:https://doi.org/10.1016/j.soilbio.2018.07.001 (2018).
34. Hartman, W. H., Richardson, C. J., Vilgalys, R. & Bruland, G. L. Environmental and anthropogenic controls over bacterial communities in wetland soils. P. Natl. Acad. Sci. USA.105, 17842-17847, doi:10.1073/pnas.0808254105 (2008).
35. Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem.57, 979-994, doi:https://doi.org/10.1016/j.soilbio.2012.10.003 (2013).
36. Huang, B., Wang, J., Jin, H. & Xu, S. Effects of long- term application fertilizer on carbon storage in calcareous meadow soil. J. Agro-Environ. Sci.25, 161-164 (2006).
37. Bacmaga, M., Wyszkowska, J. & Kucharski, J. Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Poll.228, 9, doi:10.1007/s11270-016-3200-9 (2017).
38. Guo, P. P. et al. Enzymatic activities and microbial biomass in black soil as affected by azoxystrobin. Environ. Earth Sci.74, 1353-1361, doi:10.1007/s12665-015-4126-z (2015).
39. Gianfreda, L., Rao, M. A., Piotrowska, A., Palumbo, G. & Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci. Total Environ.341, 265-279, doi:10.1016/j.scitotenv.2004.10.005 (2005).
40. Pathan, S. I. et al. Seasonal variation and distribution of total and active microbial community of β-glucosidase encoding genes in coniferous forest soil. Soil Biol. Biochem.105, 71-80 (2017).
41. Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ.33, 453-467 (2010).
42. Pathak, H. & Rao, D. L. N. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biology and Biochemistry30, 695-702, doi:https://doi.org/10.1016/S0038-0717(97)00208-3 (1998).
43. Xiao, Y. et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China. Trop. Ecol.57, 691-699 (2016).
44. Broszat, M. et al. Wastewater irrigation increases the abundance of potentially harmful gammaproteobacteria in soils in Mezquital Valley, Mexico. Appl. Environ. Microbiol.80, 5282-5291 (2014).
45. Liu, Y. et al. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ. Microbiol.13, 991-1009 (2011).
46. Baumann, K. et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry114, 201-212 (2013).
47. Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J.7, 1609-1619 (2013).
48. Chambers, L. G., Guevara, R., Boyer, J. N., Troxler, T. G. & Davis, S. E. Effects of salinity and inundation on microbial community structure and fFunction in a mangrove peat soil. Wetlands36, 361-371 (2016).
49. Wong, V. N. L., Greene, R. S. B., Dalal, R. C. & Murphy, B. W. Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manage.26, 2-11 (2010).