1. Wang, Z., Li, R., Su, C. & Loh, K. P. Intercalated phases of transition metal dichalcogenides. SmartMat 1, (2020).
2. Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).
3. Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nature Nanotechnology 13, 294–299 (2018).
4. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the Charge State of Individual Gold Adatoms. Science 305, 493–495 (2004).
5. Patera, L. L., Queck, F., Scheuerer, P. & Repp, J. Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators. Nature 566, 245–248 (2019).
6. Scheuerer, P. et al. Charge-Induced Structural Changes in a Single Molecule Investigated by Atomic Force Microscopy. Phys. Rev. Lett. 123, 066001 (2019).
7. Scheuerer, P., Patera, L. L. & Repp, J. Manipulating and Probing the Distribution of Excess Electrons in an Electrically Isolated Self-Assembled Molecular Structure. Nano Lett. 20, 1839–1845 (2020).
8. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Advances in Physics 51, 1–186 (2002).
9. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).
10. Csányi, G., Littlewood, P. B., Nevidomskyy, A. H., Pickard, C. J. & Simons, B. D. The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nature Physics 1, 42–45 (2005).
11. Hannay, N. B. et al. Superconductivity in Graphitic Compounds. Phys. Rev. Lett. 14, 225–226 (1965).
12. Avsar, A. et al. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020).
13. Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).
14. Li, B. et al. Liquid-like thermal conduction in intercalated layered crystalline solids. Nature Materials 17, 226–230 (2018).
15. Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature Materials 18, 1309–1314 (2019).
16. Little, A. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe 1/3 NbS 2. Nature Materials 19, 1062–1067 (2020).
17. Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nature Materials 19, 153–157 (2020).
18. Ko, K.-T. et al. RKKY Ferromagnetism with Ising-Like Spin States in Intercalated Fe1/4TaS2. Physical Review Letters 107, (2011).
19. Fan, S. et al. Electronic chirality in the metallic ferromagnet Fe1/3TaS2. Phys. Rev. B 96, 205119 (2017).
20. Mangelsen, S. et al. Large Anomalous Hall Effect and Slow Relaxation of the Magnetization in Fe1/3TaS2. J. Phys. Chem. C 124, 24984–24994 (2020).
21. Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nature Communications 9, 3280 (2018).
22. Togawa, Y. et al. Chiral Magnetic Soliton Lattice on a Chiral Helimagnet. Phys. Rev. Lett. 108, 107202 (2012).
23. Togawa, Y. et al. Interlayer Magnetoresistance due to Chiral Soliton Lattice Formation in Hexagonal Chiral Magnet CrNb3S6. Phys. Rev. Lett. 111, 197204 (2013).
24. Mankovsky, S., Polesya, S., Ebert, H. & Bensch, W. Electronic and magnetic properties of 2H-NbS2 intercalated by 3d transition metals. Phys. Rev. B 94, 184430 (2016).
25. Nakayama, M., Miwa, K., Ikuta, H., Hinode, H. & Wakihara, M. Electronic Structure of Intercalation Compounds of CoxNbS2. Chem. Mater. 18, 4996–5001 (2006).
26. Zhang, C. et al. Critical behavior of intercalated quasi-van der Waals ferromagnet Fe0.26TaS2. Phys. Rev. Materials 3, 114403 (2019).
27. Tenasini, G. et al. Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet Co1/3NbS2. Phys. Rev. Research 2, 023051 (2020).
28. Inui, A. et al. Chirality-Induced Spin-Polarized State of a Chiral Crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).
29. Parkin, S. S. P., Marseglia, E. A. & Brown, P. J. Magnetic structure of Co1/3NbS2and Co1/3TaS2. J. Phys. C: Solid State Phys. 16, 2765–2778 (1983).
30. Korotin, Dm. et al. Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials. Eur. Phys. J. B 65, 91 (2008).
31. Gainutdinov, I. I., Nemudry, A. P. & Zilberberg, I. L. Using Doping to Modify the Properties of SrFeO3 and SrCoO3 Oxides: DFT Calculations of the Electronic Structure. J Struct Chem 60, 171–178 (2019).
32. Steurer, W. et al. Manipulation of the Charge State of Single Au Atoms on Insulating Multilayer Films. Phys. Rev. Lett. 114, 036801 (2015).
33. Teichmann, K. et al. Bistable Charge Configuration of Donor Systems near the GaAs(110) Surfaces. Nano Lett. 11, 3538–3542 (2011).
34. Kim, H., Chang, Y. H., Lee, S.-H., Kim, Y.-H. & Kahng, S.-J. Switching and Sensing Spin States of Co–Porphyrin in Bimolecular Reactions on Au(111) Using Scanning Tunneling Microscopy. ACS Nano 7, 9312–9317 (2013).
35. Olsson, F. E., Paavilainen, S., Persson, M., Repp, J. & Meyer, G. Multiple Charge States of Ag Atoms on Ultrathin NaCl Films. Phys. Rev. Lett. 98, 176803 (2007).
36. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).
37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6, 15–50 (1996).
39. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).
40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
42. Mosey, N. J. & Carter, E. A. Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys. Rev. B 76, 155123 (2007).
43. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
44. Vanpoucke, D. E. P. & Brocks, G. Formation of Pt-induced Ge atomic nanowires on Pt/Ge(001): A density functional theory study. Phys. Rev. B 77, 241308 (2008).
45. Haga, T., Fujimoto, Y. & Saito, S. Electronic structure and scanning tunneling microscopy images of heterostructures consisting of graphene and carbon-doped hexagonal boron nitride layers. Phys. Rev. B 100, 125403 (2019).