Amzallag GN, Vaisman J (2006) Influence of brassinosteroids on initiation of the root gravitropic response in Pisum sativum seedlings. Biol Plant 50:283–286. https://doi.org/10.1007/s10535-006-0021-5
Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100:126–142. https://doi.org/10.3732/ajb.1200318
Band LR, Wells DM, Larrieu A, et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109:4668–4673. https://doi.org/10.1073/pnas.1201498109
Bennett MJ, Marchant A, Green HG, et al (1996) Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science (80- ) 273:948–950. https://doi.org/10.1126/science.273.5277.948
Bernier J, Kumar A, Ramaiah V, et al (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–518. https://doi.org/10.2135/cropsci2006.07.0495
Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol 113:1447–1455. https://doi.org/10.1104/pp.113.4.1447
Blancaflor EB, Masson PH (2003) Plant Gravitropism. Unraveling the Ups and Downs of a Complex Process. Plant Physiol. 133:1677–1690
Chang SC, Kim Y-S, Lee JY, et al (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673. https://doi.org/10.1111/j.0031-9317.2004.00356.x
Chen R, Hilson P, Sedbrook J, et al (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A 95:15112–15117. https://doi.org/10.1073/pnas.95.25.15112
Cholodny N (1927) Wuchshormone and Tropismen bei den Pflanzen. Biol Zentralbl 47:604–629
Darwin C, Darwin F (1880) The power of movement in plants. Cambridge University Press
Debi BR, Chhun T, Taketa S, et al (2005a) Defects in root development and gravity response in the aem1 mutant of rice are associated with reduced auxin efflux. J Plant Physiol 162:678–685. https://doi.org/10.1016/j.jplph.2004.09.012
Debi BR, Taketa S, Ichii M (2005b) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507–515. https://doi.org/10.1016/j.jplph.2004.08.007
Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110. https://doi.org/10.1046/j.1365-313x.1993.t01-4-00999.x
Dong Z, Jiang C, Chen X, et al (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322. https://doi.org/10.1104/pp.113.227314
Ge L, Chen H, Jiang JF, et al (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513. https://doi.org/10.1104/pp.104.041996
Ge L, Chen R (2016) Negative gravitropism in plant roots. Nat Plants 2:1–4. https://doi.org/10.1038/nplants.2016.155
Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272. https://doi.org/10.1111/J.1438-8677.1900.TB04908.X
Hada W, Bo Z, Cao WH, et al (2009) The Ethylene Receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494. https://doi.org/10.1105/tpc.108.065391
Kim SK, Chang SC, Lee EJ, et al (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004. https://doi.org/10.1104/pp.123.3.997
Li P, Wang Y, Qian Q, et al (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410. https://doi.org/10.1038/cr.2007.38
Li W, Yoshida A, Takahashi M, et al (2015) SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant J 81:282–291. https://doi.org/10.1111/tpj.12725
Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4:171–179. https://doi.org/10.1093/mp/ssq052
Liao H, Yan X, Rubio G, et al (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959. https://doi.org/10.1071/FP03255
Lipka AE, Tian F, Wang Q, et al (2012) GAPIT: Genome association and prediction integrated tool. Bioinformatics 28:2397–2399. https://doi.org/10.1093/bioinformatics/bts444
Liu H, Guo S, Xu Y, et al (2014) OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165:160–174. https://doi.org/10.1104/pp.114.235564
Lou Q, Chen L, Mei H, et al (2017) Root transcriptomic analysis revealing the importance of energy metabolism to the development of deep roots in rice (Oryza sativa L.). Front Plant Sci 8:. https://doi.org/10.3389/fpls.2017.01314
Lou Q, Chen L, Mei H, et al (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757. https://doi.org/10.1093/jxb/erv246
Ma X, Feng F, Wei H, et al (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.01801
Ma X, Feng F, Zhang Y, et al (2019) A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genet 15:1–20. https://doi.org/10.1371/journal.pgen.1008191
Mai CD, Phung NTP, To HTM, et al (2014) Genes controlling root development in rice. Rice 7:1–11. https://doi.org/10.1186/s12284-014-0030-5
Mather KA, Caicedo AL, Polato NR, et al (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232. https://doi.org/10.1534/genetics.107.079616
Moncada P, Martínez CP, Borrero J, et al (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52. https://doi.org/10.1007/s001220051616
Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123:665–670. https://doi.org/10.1104/pp.123.2.665
Müller A, Guan C, Gälweiler L, et al (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911. https://doi.org/10.1093/emboj/17.23.6903
Němec B (1900) 28. Bohumil Němec: Ueber die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245. https://doi.org/10.1111/J.1438-8677.1900.TB04905.X
Norton GJ, Price AH (2009) Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica 166:229–237. https://doi.org/10.1007/s10681-008-9833-z
Price A (2002) QTLs for Root Growth and Drought Resistance in Rice. In: Molecular Techniques in Crop Improvement. Springer Netherlands, pp 563–584
Price AH, Steele KA, Moore BJ, et al (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100:49–56. https://doi.org/10.1007/s001220050007
Rigó G, Ayaydin F, Tietz O, et al (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608. https://doi.org/10.1105/tpc.113.110452
Staves MP, Wayne R, Leopold AC (1997) The effect of the external medium on the gravitropic curvature of rice ( Oryza sativa, Poaceae) roots. Am J Bot 84:1522–1529. https://doi.org/10.2307/2446613
Uga Y, Kitomi Y, Ishikawa S, Yano M (2015a) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119. https://doi.org/10.1270/jsbbs.65.111
Uga Y, Kitomi Y, Yamamoto E, et al (2015b) A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8:8. https://doi.org/10.1186/s12284-015-0044-7
Uga Y, Sugimoto K, Ogawa S, et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. https://doi.org/10.1038/ng.2725
Vij S, Giri J, Dansana PK, et al (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1:732–750. https://doi.org/10.1093/mp/ssn047
Waidmann S, Ruiz Rosquete M, Schöller M, et al (2019) Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-11483-4
Went F (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc K Ned Akad van Wet 30:10–19
Wu J, Feng F, Lian X, et al (2015) Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol 15:1–10. https://doi.org/10.1186/s12870-015-0608-0
Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279. https://doi.org/10.1111/tpj.12118
Zhang Y, He P, Ma X, et al (2019) Auxin‐mediated statolith production for root gravitropism. New Phytol 224:761–774. https://doi.org/10.1111/nph.15932
Amzallag GN, Vaisman J (2006) Influence of brassinosteroids on initiation of the root gravitropic response in Pisum sativum seedlings. Biol Plant 50:283–286. https://doi.org/10.1007/s10535-006-0021-5
Baldwin KL, Strohm AK, Masson PH (2013) Gravity sensing and signal transduction in vascular plant primary roots. Am J Bot 100:126–142. https://doi.org/10.3732/ajb.1200318
Band LR, Wells DM, Larrieu A, et al (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109:4668–4673. https://doi.org/10.1073/pnas.1201498109
Bennett MJ, Marchant A, Green HG, et al (1996) Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science (80- ) 273:948–950. https://doi.org/10.1126/science.273.5277.948
Bernier J, Kumar A, Ramaiah V, et al (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–518. https://doi.org/10.2135/cropsci2006.07.0495
Blancaflor EB, Hasenstein KH (1997) The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize. Plant Physiol 113:1447–1455. https://doi.org/10.1104/pp.113.4.1447
Blancaflor EB, Masson PH (2003) Plant Gravitropism. Unraveling the Ups and Downs of a Complex Process. Plant Physiol. 133:1677–1690
Chang SC, Kim Y-S, Lee JY, et al (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673. https://doi.org/10.1111/j.0031-9317.2004.00356.x
Chen R, Hilson P, Sedbrook J, et al (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A 95:15112–15117. https://doi.org/10.1073/pnas.95.25.15112
Cholodny N (1927) Wuchshormone and Tropismen bei den Pflanzen. Biol Zentralbl 47:604–629
Darwin C, Darwin F (1880) The power of movement in plants. Cambridge University Press
Debi BR, Chhun T, Taketa S, et al (2005a) Defects in root development and gravity response in the aem1 mutant of rice are associated with reduced auxin efflux. J Plant Physiol 162:678–685. https://doi.org/10.1016/j.jplph.2004.09.012
Debi BR, Taketa S, Ichii M (2005b) Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J Plant Physiol 162:507–515. https://doi.org/10.1016/j.jplph.2004.08.007
Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110. https://doi.org/10.1046/j.1365-313x.1993.t01-4-00999.x
Dong Z, Jiang C, Chen X, et al (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322. https://doi.org/10.1104/pp.113.227314
Ge L, Chen H, Jiang JF, et al (2004) Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol 135:1502–1513. https://doi.org/10.1104/pp.104.041996
Ge L, Chen R (2016) Negative gravitropism in plant roots. Nat Plants 2:1–4. https://doi.org/10.1038/nplants.2016.155
Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272. https://doi.org/10.1111/J.1438-8677.1900.TB04908.X
Hada W, Bo Z, Cao WH, et al (2009) The Ethylene Receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494. https://doi.org/10.1105/tpc.108.065391
Kim SK, Chang SC, Lee EJ, et al (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004. https://doi.org/10.1104/pp.123.3.997
Li P, Wang Y, Qian Q, et al (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410. https://doi.org/10.1038/cr.2007.38
Li W, Yoshida A, Takahashi M, et al (2015) SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. Plant J 81:282–291. https://doi.org/10.1111/tpj.12725
Li Y, Dai X, Cheng Y, Zhao Y (2011) NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4:171–179. https://doi.org/10.1093/mp/ssq052
Liao H, Yan X, Rubio G, et al (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959. https://doi.org/10.1071/FP03255
Lipka AE, Tian F, Wang Q, et al (2012) GAPIT: Genome association and prediction integrated tool. Bioinformatics 28:2397–2399. https://doi.org/10.1093/bioinformatics/bts444
Liu H, Guo S, Xu Y, et al (2014) OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165:160–174. https://doi.org/10.1104/pp.114.235564
Lou Q, Chen L, Mei H, et al (2017) Root transcriptomic analysis revealing the importance of energy metabolism to the development of deep roots in rice (Oryza sativa L.). Front Plant Sci 8:. https://doi.org/10.3389/fpls.2017.01314
Lou Q, Chen L, Mei H, et al (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66:4749–4757. https://doi.org/10.1093/jxb/erv246
Ma X, Feng F, Wei H, et al (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7:1–13. https://doi.org/10.3389/fpls.2016.01801
Ma X, Feng F, Zhang Y, et al (2019) A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genet 15:1–20. https://doi.org/10.1371/journal.pgen.1008191
Mai CD, Phung NTP, To HTM, et al (2014) Genes controlling root development in rice. Rice 7:1–11. https://doi.org/10.1186/s12284-014-0030-5
Mather KA, Caicedo AL, Polato NR, et al (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177:2223–2232. https://doi.org/10.1534/genetics.107.079616
Moncada P, Martínez CP, Borrero J, et al (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52. https://doi.org/10.1007/s001220051616
Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123:665–670. https://doi.org/10.1104/pp.123.2.665
Müller A, Guan C, Gälweiler L, et al (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911. https://doi.org/10.1093/emboj/17.23.6903
Němec B (1900) 28. Bohumil Němec: Ueber die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245. https://doi.org/10.1111/J.1438-8677.1900.TB04905.X
Norton GJ, Price AH (2009) Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica 166:229–237. https://doi.org/10.1007/s10681-008-9833-z
Price A (2002) QTLs for Root Growth and Drought Resistance in Rice. In: Molecular Techniques in Crop Improvement. Springer Netherlands, pp 563–584
Price AH, Steele KA, Moore BJ, et al (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100:49–56. https://doi.org/10.1007/s001220050007
Rigó G, Ayaydin F, Tietz O, et al (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608. https://doi.org/10.1105/tpc.113.110452
Staves MP, Wayne R, Leopold AC (1997) The effect of the external medium on the gravitropic curvature of rice ( Oryza sativa, Poaceae) roots. Am J Bot 84:1522–1529. https://doi.org/10.2307/2446613
Uga Y, Kitomi Y, Ishikawa S, Yano M (2015a) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119. https://doi.org/10.1270/jsbbs.65.111
Uga Y, Kitomi Y, Yamamoto E, et al (2015b) A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8:8. https://doi.org/10.1186/s12284-015-0044-7
Uga Y, Sugimoto K, Ogawa S, et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102. https://doi.org/10.1038/ng.2725
Vij S, Giri J, Dansana PK, et al (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1:732–750. https://doi.org/10.1093/mp/ssn047
Waidmann S, Ruiz Rosquete M, Schöller M, et al (2019) Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat Commun 10:1–14. https://doi.org/10.1038/s41467-019-11483-4
Went F (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc K Ned Akad van Wet 30:10–19
Wu J, Feng F, Lian X, et al (2015) Genome-wide Association Study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice. BMC Plant Biol 15:1–10. https://doi.org/10.1186/s12870-015-0608-0
Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279. https://doi.org/10.1111/tpj.12118
Zhang Y, He P, Ma X, et al (2019) Auxin‐mediated statolith production for root gravitropism. New Phytol 224:761–774. https://doi.org/10.1111/nph.15932