1. Yang, M., Shrestha, N. K. & Schmuki, P. Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochemistry Communications 11, 1908–1911 (2009).
2. Lee, S. H. et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Advanced Materials 18, 763–766 (2006).
3. Qi, H. et al. Triple-layered nanostructured WO3 photoanodes with enhanced photocurrent generation and superior stability for photoelectrochemical solar energy conversion. Nanoscale 6, 13457–13462 (2014).
4. Prabhu, N., Agilan, S., Muthukumarasamy, N. & Senthil, T. S. Enhanced photovoltaic performance of WO3 nanoparticles added dye sensitized solar cells. Journal of Materials Science: Materials in Electronics 25, 5288–5295 (2014).
5. Li, J. et al. Microwave-assisted growth of WO3·0.33H2O micro/nanostructures with enhanced visible light photocatalytic properties. CrystEngComm 15, 7904–7913 (2013).
6. Li, J., Liu, X., Cui, J. & Sun, J. Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties. ACS Applied Materials and Interfaces 7, 10108–10114 (2015).
7. Wang, C., Li, X., Feng, C., Sun, Y. & Lu, G. Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis, characterization, and their gas sensing properties. Sensors and Actuators, B: Chemical 210, 75–81 (2015).
8. Zhou, J. et al. Three-dimensional tungsten oxide nanowire networks. Advanced Materials 17, 2107–2110 (2005).
9. Slimani, Y. et al. Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa 2 Cu 3 O y superconductor. Ceramics International 45, 6828–6835 (2019).
10. Suda, Y., Kawasaki, H., Ohshima, T. & Yagyuu, Y. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition. Thin Solid Films 516, 4397–4401 (2008).
11. Park, S. M. & Nam, C. Dye-adsorption properties of WO3 nanorods grown by citric acid assisted hydrothermal methods. Ceramics International 43, 17022–17025 (2017).
12. Zhuzhelskii, D. V. et al. Insights on the electrodeposition mechanism of tungsten oxide into conducting polymers: Potentiostatic vs. potentiodynamic deposition. Synthetic Metals 267, 116469 (2020).
13. Sun, Q. et al. Hydrothermal synthesis of WO3 nanorods and their performance in the adsorption of Rhodamine B and the synthesis of adipic acid. Ceramics International 40, 11447–11451 (2014).
14. Wang, Z., Zhou, S. & Wu, L. Preparation of rectangular WO3-H2O nanotubes under mild conditions. Advanced Functional Materials 17, 1790–1794 (2007).
15. Lu, N., Yang, C., Liu, P. & Su, X. Preparation of 2 nm tungsten oxide nanowires based on two-phase strategy and their ultra-sensitive NO2 gas sensing properties. Journal of Colloid and Interface Science 557, 311–317 (2019).
16. Hu, X., Ji, Q., Hill, J. P. & Ariga, K. Large-scale synthesis of WOx-EDA nanobelts and their application as photoswitches. CrystEngComm 13, 2237–2241 (2011).
17. Garcia, I. T. S. et al. Multifaceted tungsten oxide films grown by thermal evaporation. Surface and Coatings Technology 283, 177–183 (2015).
18. Ji, R. et al. Low-temperature preparation of tungsten oxide anode buffer layer via ultrasonic spray pyrolysis method for large-area organic solar cells. Materials 10, (2017).
19. Au, B. W. C., Chan, K. Y., Pang, W. L., Lee, C. L. & Mustafa, A. H. Tungsten oxide (Wo3) films prepared by sol-gel spin-coating technique. Solid State Phenomena 280 SSP, 71–75 (2018).
20. Sadakane, M. et al. Preparation of nano-structured crystalline tungsten(VI) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chemical Communications 1, 6552–6554 (2008).
21. Das, P. K. et al. Functional Blocking Layer of Twisted Tungsten Oxide Nanorod Grown by Electrochemical Anodization for Photoelectrochemical Water Splitting. Journal of The Electrochemical Society 167, 066501 (2020).
22. Hidayat, D., Purwanto, A., Wang, W. N. & Okuyama, K. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance. Materials Research Bulletin 45, 165–173 (2010).
23. Nagyné-Kovács, T. et al. Effect of pH in the hydrothermal preparation of monoclinic tungsten oxide. Journal of Solid State Chemistry 281, 1–7 (2020).
24. Jamal, M. et al. Development of Tungsten Oxide Nanoparticle Modified Carbon Fibre Cloth as Flexible pH Sensor. Scientific Reports 9, 1–9 (2019).
25. Panda, S. K. et al. Magnetite nanoparticles as sorbents for dye removal: a review. Environmental Chemistry Letters (Springer International Publishing, 2021). doi:10.1007/s10311-020-01173-9
26. Cronholm, P. et al. Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 9, 970–982 (2013).
27. Agnihotri, R., Gaur, S. & Albin, S. Nanometals in Dentistry: Applications and Toxicological Implications—a Systematic Review. Biological Trace Element Research 197, 70–88 (2020).
28. Baek, Y.-W. & An, Y.-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. The Science of the total environment 409, 1603–1608 (2011).
29. Miller, P. J. & Shantz, D. F. Covalently functionalized uniform amino-silica nanoparticles. Synthesis and validation of amine group accessibility and stability. Nanoscale Advances 2, 860–868 (2020).
30. EL-Fakharany, E. M., Abd-Elhamid, A. I. & El-Deeb, N. M. Preparation and characterization of novel nanocombination of bovine lactoperoxidase with Dye Decolorizing and anti-bacterial activity. Scientific Reports 9, (2019).
31. Havaldar, D. V. et al. Differently synthesized gold nanoparticles respond differently to functionalization with L-amino acids. Particuology 52, 97–104 (2020).
32. Saptarshi, S. R., Duschl, A. & Lopata, A. L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology (2013). doi:10.1186/1477-3155-11-26
33. Sarkar, S. et al. Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environmental Chemistry Letters 18, 1569–1580 (2020).
34. El-Fakharany, E. M. Nanoformulation of lactoferrin potentiates its activity and enhances novel biotechnological applications. International Journal of Biological Macromolecules 165, (2020).
35. El-Fakharany, E. M. Nanoformulation approach for improved stability and efficiency of lactoperoxidase. Preparative Biochemistry and Biotechnology 0, 1–13 (2020).
36. Jiang, T. et al. Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11, 737–742 (2013).
37. Marcelo, L. R., de Gois, J. S., da Silva, A. A. & Cesar, D. V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environmental Chemistry Letters (Springer International Publishing, 2020). doi:10.1007/s10311-020-01134-2
38. Harding, M. C. et al. Transitions From Heart Disease to Cancer as the Leading Cause of Death in US States, 1999-2016. Preventing chronic disease 15, E158 (2018).
39. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70, 7–30 (2020).
40. Holland, T., Fowler, V. G. & Shelburne, S. A. Invasive gram-positive bacterial infection in cancer patients. Clinical Infectious Diseases 59, S331–S334 (2014).
41. Aydin Sevinç, B. & Hanley, L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of biomedical materials research. Part B, Applied biomaterials 94, 22–31 (2010).
42. Tang, Z. X. & Lv, B. F. MgO nanoparticles as antibacterial agent: Preparation and activity. Brazilian Journal of Chemical Engineering 31, 591–601 (2014).
43. Feng, X. et al. The Critical Role of Tryptophan in the Antimicrobial Activity and Cell Toxicity of the Duck Antimicrobial Peptide DCATH. Frontiers in Microbiology 11, 1–14 (2020).
44. Costa, D., Savio, L. & Pradier, C. M. Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review. Journal of Physical Chemistry B 120, 7039–7052 (2016).
45. Ustunol, I. B., Gonzalez-Pech, N. I. & Grassian, V. H. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. Journal of Colloid and Interface Science 554, 362–375 (2019).
46. Tsai, Y. C., Tang, C. C., Wu, H. H., Wang, Y. S. & Chen, Y. F. Antibacterial Activity of Cysteine-Derived Cationic Dipeptides. International Journal of Peptide Research and Therapeutics 26, 1107–1114 (2020).
47. Bi, X., Wang, C., Ma, L., Sun, Y. & Shang, D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. Journal of Applied Microbiology 115, 663–672 (2013).
48. Abu-Serie, M. M. & El-Fakharany, E. M. Efficiency of novel nanocombinations of bovine milk proteins (lactoperoxidase and lactoferrin) for combating different human cancer cell lines. Scientific Reports (2017). doi:10.1038/s41598-017-16962-6
49. El-Fakharany, E. M. et al. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. Protein Journal (2018). doi:10.1007/s10930-018-9770-1
50. Abdallah, A. E. et al. Design, synthesis and molecular modeling of new quinazolin-4(3H)-one based VEGFR-2 kinase inhibitors for potential anticancer evaluation. Bioorganic Chemistry 109, 104695 (2021).
51. Mudunkotuwa, I. A. & Grassian, V. H. Histidine adsorption on TiO2 nanoparticles: An integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions. Langmuir 30, 8751–8760 (2014).
52. Mahmoudi, M. et al. Protein− nanoparticle interactions: opportunities and challenges. Chemical reviews 111, 5610–5637 (2011).
53. Jeevitha, G., Abhinayaa, R., Mangalaraj, D. & Ponpandian, N. Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. Journal of Physics and Chemistry of Solids 116, 137–147 (2018).
54. Dinari, M., Momeni, M. M. & Ahangarpour, M. Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst. Applied Physics A: Materials Science and Processing 122, 1–9 (2016).
55. Liu, Y. et al. Cysteine potentiates bactericidal antibiotics activity against gram-negative bacterial persisters. Infection and Drug Resistance 13, 2593–2599 (2020).
56. Epand, R. M., Walker, C., Epand, R. F. & Magarvey, N. A. Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta - Biomembranes 1858, 980–987 (2016).
57. Du, X. et al. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydrate Polymers 229, 115484 (2020).
58. Chan, D. I., Prenner, E. J. & Vogel, H. J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes 1758, 1184–1202 (2006).
59. Wu, S. Y. et al. Amino acid-modified PAMAM dendritic nanocarriers as effective chemotherapeutic drug vehicles in cancer treatment: A study using zebrafish as a cancer model. RSC Advances 10, 20682–20690 (2020).
60. Borenfreund, E. & Puerner, J. A. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). Journal of Tissue Culture Methods 9, 7–9 (1985).
61. Kato, M. et al. L-cysteine as a regulator for arsenic-mediated cancer-promoting and anti-cancer effects. Toxicology in Vitro 25, 623–629 (2011).
62. Gascoyne, R. D. et al. Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood 90, 244–251 (1997).
63. Bodner, S. M. et al. file:///E:/2020 work/Ahmed Ibrahem work/new witing on WO3 with results/returned from Esmail with molecular docking/refrence 4 molecular docking.pdf. Oncogene 7, 743–749 (1992).
64. Garneau, H., Paquin, M. C., Carrier, J. C. & Rivard, N. E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. Journal of Cellular Physiology 221, 350–358 (2009).
65. Joensuu, H., Pylkkänen, L. & Toikkanen, S. Bcl-2 protein expression and long-term survival in breast cancer. American Journal of Pathology 145, 1191–1198 (1994).
66. Hsu, J. & Sage, J. Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle 15, 3183–3190 (2016).