1 Oldroyd, G. E. D. & Leyser, O. A plant's diet, surviving in a variable nutrient environment. Science 368 (2020).
2 Gong, Z. Z., Xiong, L. M., Shi, H. Z., Yang, S. H., Herrera-Estrella, L. R., Xu, G. H., Chao, D. Y., Li, J. R., Wang, P. Y., Qin, F., Li, J. J., Ding, Y. L., Shi, Y. T., Wang, Y., Yang, Y. Q., Guo, Y. & Zhu, J. K. Plant abiotic stress response and nutrient use efficiency. Science China-Life Sciences 63, 635-674 (2020).
3 Raghothama, K. G. Phosphate Acquisition. Annu Rev Plant Physiol Plant Mol Biol 50, 665-693 (1999).
4 Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157, 423-447 (2003).
5 Rouached, H., Arpat, A. B. & Poirier, Y. Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3, 288-299 (2010).
6 Chiou, T. J. & Lin, S. I. Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62, 185-206 (2011).
7 Wu, P., Shou, H., Xu, G. & Lian, X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16, 205-212 (2013).
8 Lopez-Arredondo, D. L., Leyva-Gonzalez, M. A., Gonzalez-Morales, S. I., Lopez-Bucio, J. & Herrera-Estrella, L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65, 95-123 (2014).
9 Ham, B. K., Chen, J. Y., Yan, Y. & Lucas, W. J. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology 49, 1-9 (2018).
10 Jung, J. Y., Ried, M. K., Hothorn, M. & Poirier, Y. Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Curr Opin Biotechnol 49, 156-162 (2018).
11 Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L. & Thibaud, M. C. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102, 11934-11939 (2005).
12 Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B. D., Blasing, O., Usadel, B., Czechowski, T., Udvardi, M. K., Stitt, M. & Scheible, W. R. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30, 85-112 (2007).
13 Lee, Y. S., Mulugu, S., York, J. D. & O'Shea, E. K. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316, 109-112 (2007).
14 Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Perez-Perez, J., Solano, R., Leyva, A. & Paz-Ares, J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6, e1001102 (2010).
15 Wykoff, D. D., Grossman, A. R., Weeks, D. P., Usuda, H. & Shimogawara, K. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci U S A 96, 15336-15341 (1999).
16 Rubio, V., Linhares, F., Solano, R., Martin, A. C., Iglesias, J., Leyva, A. & Paz-Ares, J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development 15, 2122-2133 (2001).
17 Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W. & Wu, P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146, 1673-1686 (2008).
18 Guo, M., Ruan, W., Li, C., Huang, F., Zeng, M., Liu, Y., Yu, Y., Ding, X., Wu, Y., Wu, Z., Mao, C., Yi, K., Wu, P. & Mo, X. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiol 168, 1762-1776 (2015).
19 Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., Li, C., Wu, Z., Liu, Y., Yu, Y., Shou, H., Mo, X., Mao, C. & Wu, P. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A 111, 14953-14958 (2014).
20 Lv, Q. D., Zhong, Y. J., Wang, Y. G., Zhang, L., Shi, J., Wu, Z. C., Liu, Y., Mao, C. Z., Yi, K. K. & Wu, P. SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice. Plant Cell 26, 1586-1597 (2014).
21 Puga, M. I., Mateos, I., Charukesi, R., Wang, Z., Franco-Zorrilla, J. M., de Lorenzo, L., Irigoyen, M. L., Masiero, S., Bustos, R., Rodriguez, J., Leyva, A., Rubio, V., Sommer, H. & Paz-Ares, J. SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci U S A 111, 14947-14952 (2014).
22 Wild, R., Gerasimaite, R., Jung, J. Y., Truffault, V., Pavlovic, I., Schmidt, A., Saiardi, A., Jessen, H. J., Poirier, Y., Hothorn, M. & Mayer, A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352, 986-990 (2016).
23 Zhong, Y., Wang, Y., Guo, J., Zhu, X., Shi, J., He, Q., Liu, Y., Wu, Y., Zhang, L., Lv, Q. & Mao, C. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol 219, 135-148 (2018).
24 Jiang, M., Sun, L., Isupov, M. N., Littlechild, J. A., Wu, X., Wang, Q., Wang, Q., Yang, W. & Wu, Y. Structural basis for the Target DNA recognition and binding by the MYB domain of phosphate starvation response 1. FEBS J 286, 2809-2821 (2019).
25 Ried, M. K., Wild, R., Zhu, J., Pipercevic, J., Sturm, K., Broger, L., Harmel, R. K., Abriata, L. A., Hothorn, L. A., Fiedler, D., Hiller, S. & Hothorn, M. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat Commun 12, 384 (2021).
26 Dong, J., Ma, G., Sui, L., Wei, M., Satheesh, V., Zhang, R., Ge, S., Li, J., Zhang, T. E., Wittwer, C., Jessen, H. J., Zhang, H., An, G. Y., Chao, D. Y., Liu, D. & Lei, M. Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Mol Plant 12, 1463-1473 (2019).
27 Wild, R. & Hothorn, M. The macro domain as fusion tag for carrier-driven crystallization. Protein Sci 26, 365-374 (2017).
28 Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J Mol Biol 233, 123-138 (1993).
29 Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780-2781 (2008).
30 Zhu, J., Lau, K., Puschmann, R., Harmel, R. K., Zhang, Y., Pries, V., Gaugler, P., Broger, L., Dutta, A. K., Jessen, H. J., Schaaf, G., Fernie, A. R., Hothorn, L. A., Fiedler, D. & Hothorn, M. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. Elife 8 (2019).
31 Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. & Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci 15, 573-581 (2010).
32 Desmarini, D., Lev, S., Furkert, D., Crossett, B., Saiardi, A., Kaufman-Francis, K., Li, C., Sorrell, T. C., Wilkinson-White, L., Matthews, J., Fiedler, D. & Djordjevic, J. T. IP7-SPX Domain Interaction Controls Fungal Virulence by Stabilizing Phosphate Signaling Machinery. mBio 11 (2020).
33 Wang, Q. S., Yu, F., Huang, S., Sun, B., Zhang, K. H., Liu, K., Wang, Z. J., Xu, C. Y., Wang, S. S., Yang, L. F., Pan, Q. Y., Li, L., Zhou, H., Cui, Y., Xu, Q., Earnest, T. & He, J. H. The macromolecular crystallography beamline of SSRF. Nuclear Science and Techniques 26, 12-17 (2015).
34 Wang, Q. S., Zhang, K. H., Cui, Y., Wang, Z. J., Pan, Q. Y., Liu, K., Sun, B., Zhou, H., Li, M. J., Xu, Q., Xu, C. Y., Yu, F. & He, J. H. Upgrade of macromolecular crystallography beamline BL17U1 at SSRF. Nuclear Science and Techniques 29 (2018).
35 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326 (1997).
36 Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242 (2011).
37 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).
38 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 (2004).
39 Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 (2002).
40 Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R., Franklin, J. M., Jeffries, C. M. & Svergun, D. I. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50, 1212-1225 (2017).
41 Schwieters, C. D., Kuszewski, J. J. & Clore, G. M. Using Xplor-NIH for NMR molecular structure determination. Progress in Nuclear Magnetic Resonance Spectroscopy 48, 47-62 (2006).
42 Lampropoulos, A., Sutikovic, Z., Wenzl, C., Maegele, I., Lohmann, J. U. & Forner, J. GreenGate---a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One 8, e83043 (2013).
43 Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8, 91 (2008).
44 Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743 (1998).