In this work, sunflower straw (SS) was used as the raw material, H3PO4 was used as the activator, and the sunflower straw activated carbon (SSAC) was prepared by the one-step activation method under the impregnation ratio of 1:1, 1:2, 1:3, 1:5 (SS/H3PO4, g/g). The adsorption of acid fuchsin (AF) simulated dye wastewater by SSAC prepared under different immersion ratios has been studied. As the impregnation ratio increases, the pore structures of SSAC changed greatly. SSAC3 had the largest specific surface area (1794.01 m2/g), and SSAC4 had the smallest microporosity (0.0527 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of four types of SSAC to AF were more in line with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable for describing SSAC3 and SSAC4, and the Freundlich isotherm model was suitable for describing SSAC1 and SSAC2. Thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200 mg/L AF, and the maximum adsorption capacity of 2763.36 mg/g, which was the highest among the four types of SSAC. This study shows that the sunflower straw activated carbon prepared by the H3PO4 one-step activation method is a green and efficient carbon material and has great application potential in the treatment of dye-containing wastewater.