[1] R.D. Christofferson, K.G. Lehmann, G.V. Martin, N. Every, J.H. Caldwell, S.R. Kapadia (2005) Effect of chronic total coronary occlusion on treatment strategy. Am J Cardiol 95(9): 1088-91.
[2] V.S. Srinivas, M.M. Brooks, K.M. Detre, S.B. King, 3rd, A.K. Jacobs, J. Johnston, D.O. Williams (2002) Contemporary percutaneous coronary intervention versus balloon angioplasty for multivessel coronary artery disease: a comparison of the National Heart, Lung and Blood Institute Dynamic Registry and the Bypass Angioplasty Revascularization Investigation (BARI) study. Circulation 106(13): 1627-33.
[3] P. Fefer, M.L. Knudtson, A.N. Cheema, P.D. Galbraith, A.B. Osherov, S. Yalonetsky, S. Gannot, M. Samuel, M. Weisbrod, D. Bierstone, J.D. Sparkes, G.A. Wright, B.H. Strauss (2012) Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J Am Coll Cardiol 59(11): 991-7.
[4] S. Windecker, P. Kolh, F. Alfonso, J.P. Collet, J. Cremer, V. Falk, G. Filippatos, C. Hamm, S.J. Head, P. Juni, A.P. Kappetein, A. Kastrati, J. Knuuti, U. Landmesser, G. Laufer, F.J. Neumann, D.J. Richter, P. Schauerte, M. Sousa Uva, G.G. Stefanini, D.P. Taggart, L. Torracca, M. Valgimigli, W. Wijns, A. Witkowski (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37): 2541-619.
[5] G.S. Werner (2014) The role of coronary collaterals in chronic total occlusions. Curr Cardiol Rev 10(1): 57-64.
[6] R. Sachdeva, M. Agrawal, S.E. Flynn, G.S. Werner, B.F. Uretsky (2014) The myocardium supplied by a chronic total occlusion is a persistently ischemic zone. Catheter Cardiovasc Interv 83(1): 9-16.
[7] G.S. Werner, R. Surber, F. Kuethe, U. Emig, G. Schwarz, P. Bahrmann, H.R. Figulla (2005) Collaterals and the recovery of left ventricular function after recanalization of a chronic total coronary occlusion. Am Heart J 149(1): 129-37.
[8] J.H. Choi, S.A. Chang, J.O. Choi, Y.B. Song, J.Y. Hahn, S.H. Choi, S.C. Lee, S.H. Lee, J.K. Oh, Y. Choe, H.C. Gwon (2013) Frequency of myocardial infarction and its relationship to angiographic collateral flow in territories supplied by chronically occluded coronary arteries. Circulation 127(6): 703-9.
[9] S.R. Meisel, A. Frimerman, D.S. Blondheim, A. Shotan, A. Asif, J. Shani, Y. Rozenman, M. Shochat (2013) Relation of the systemic blood pressure to the collateral pressure distal to an infarct-related coronary artery occlusion during acute myocardial infarction. Am J Cardiol 111(3): 319-23.
[10] K.P. Rentrop, M. Cohen, H. Blanke, R.A. Phillips (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5(3): 587-92.
[11] M. Zimarino, M. D'Andreamatteo, R. Waksman, S.E. Epstein, R. De Caterina (2014) The dynamics of the coronary collateral circulation. Nat Rev Cardiol 11(4): 191-7.
[12] E.K. Economou, E. Oikonomou, G. Siasos, N. Papageorgiou, S. Tsalamandris, K. Mourouzis, S. Papaioanou, D. Tousoulis (2015) The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis 241(2): 624-33.
[13] D.A. Chistiakov, A.N. Orekhov, Y.V. Bobryshev (2016) Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 94: 107-121.
[14] H. Seitz, H. Royo, M.L. Bortolin, S.P. Lin, A.C. Ferguson-Smith, J. Cavaille (2004) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14(9): 1741-8.
[15] S.M. Welten, A.J. Bastiaansen, R.C. de Jong, M.R. de Vries, E.A. Peters, M.C. Boonstra, S.P. Sheikh, N. La Monica, E.R. Kandimalla, P.H. Quax, A.Y. Nossent (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res 115(8): 696-708.
[16] P. Wang, Y. Luo, H. Duan, S. Xing, J. Zhang, D. Lu, J. Feng, D. Yang, L. Song, X. Yan (2013) MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol 33(18): 3689-99.
[17] J.S. Esser, E. Saretzki, F. Pankratz, B. Engert, S. Grundmann, C. Bode, M. Moser, Q. Zhou (2017) Bone morphogenetic protein 4 regulates microRNAs miR-494 and miR-126-5p in control of endothelial cell function in angiogenesis. Thromb Haemost 117(4): 734-749.
[18] E.S. Brilakis, K. Mashayekhi, E. Tsuchikane, N. Abi Rafeh, K. Alaswad, M. Araya, A. Avran, L. Azzalini, A.M. Babunashvili, B. Bayani, R. Bhindi, N. Boudou, M. Boukhris, N.Z. Bozinovic, L. Bryniarski, A. Bufe, C.E. Buller, M.N. Burke, H.J. Buttner, P. Cardoso, M. Carlino, E.H. Christiansen, A. Colombo, K. Croce, F. Damas de Los Santos, T. De Martini, J. Dens, C. Di Mario, K. Dou, M. Egred, A.M. ElGuindy, J. Escaned, S. Furkalo, A. Gagnor, A.R. Galassi, R. Garbo, J. Ge, P.K. Goel, O. Goktekin, L. Grancini, J.A. Grantham, C. Hanratty, S. Harb, S.A. Harding, J.P.S. Henriques, J.M. Hill, F.A. Jaffer, Y. Jang, R. Jussila, A. Kalnins, A. Kalyanasundaram, D.E. Kandzari, H.L. Kao, D. Karmpaliotis, H.H. Kassem, P. Knaapen, R. Kornowski, O. Krestyaninov, A.V.G. Kumar, P. Laanmets, P. Lamelas, S.W. Lee, T. Lefevre, Y. Li, S.T. Lim, S. Lo, W. Lombardi, M. McEntegart, M. Munawar, J.A. Navarro Lecaro, H.M. Ngo, W. Nicholson, G.K. Olivecrona, L. Padilla, M. Postu, A. Quadros, F.H. Quesada, V.S. Prakasa Rao, N. Reifart, M. Saghatelyan, R. Santiago, G. Sianos, E. Smith, C.S. J, G.W. Stone, J.W. Strange, K. Tammam, I. Ungi, M. Vo, V.H. Vu, S. Walsh, G.S. Werner, J.R. Wollmuth, E.B. Wu, R.M. Wyman, B. Xu, M. Yamane, L.F. Ybarra, R.W. Yeh, Q. Zhang, S. Rinfret (2019) Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention. Circulation 140(5): 420-433.
[19] Y. Cui, H. Chen, R. Xi, H. Cui, Y. Zhao, E. Xu, T. Yan, X. Lu, F. Huang, P. Kong, Y. Li, X. Zhu, J. Wang, W. Zhu, Y. Ma, Y. Zhou, S. Guo, L. Zhang, Y. Liu, B. Wang, Y. Xi, R. Sun, X. Yu, Y. Zhai, F. Wang, J. Yang, B. Yang, C. Cheng, J. Liu, B. Song, H. Li, Y. Wang, Y. Zhang, X. Cheng, Q. Zhan, Z. Liu (2020) Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 30(10): 902-913.
[20] B. Li, S.W. Brady, X. Ma, S. Shen, Y. Zhang, Y. Li, K. Szlachta, L. Dong, Y. Liu, F. Yang, N. Wang, D.A. Flasch, M.A. Myers, H.L. Mulder, L. Ding, L. Tian, K. Hagiwara, K. Xu, X. Zhou, E. Sioson, T. Wang, L. Yang, J. Zhao, H. Zhang, Y. Shao, H. Sun, L. Sun, J. Cai, H.Y. Sun, T.N. Lin, L. Du, H. Li, M. Rusch, M.N. Edmonson, J. Easton, X. Zhu, J. Zhang, C. Cheng, B.J. Raphael, J. Tang, J.R. Downing, L.B. Alexandrov, B.S. Zhou, C.H. Pui, J.J. Yang (2020) Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood 135(1): 41-55.
[21] W. Gao, H. Liu, J. Yuan, C. Wu, D. Huang, Y. Ma, J. Zhu, L. Ma, J. Guo, H. Shi, Y. Zou, J. Ge (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J Cell Mol Med 20(12): 2318-2327.
[22] K.J. Livak, T.D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4): 402-8.
[23] Y. Bai, R. Liu, Z. Li, Y. Zhang, X. Wang, J. Wu, S. Qian, B. Li, Z. Zhang, A.H. Fathy, D. Cappetta, J. Zhou, Y. Zou, J. Qian, J. Ge (2019) VEGFR endocytosis regulates the angiogenesis in a mouse model of hindlimb ischemia. J Thorac Dis 11(5): 1849-1859.
[24] C. Li, R. Xu, K. Yao, J. Zhang, S. Chen, L. Pang, H. Lu, Y. Dai, J. Qian, H. Shi, J. Ge (2020) Functional significance of intermediate coronary stenosis in patients with single-vessel coronary artery disease: A comparison of dynamic SPECT coronary flow reserve with intracoronary pressure-derived fractional flow reserve (FFR). J Nucl Cardiol: Online ahead of print.
[25] W.J. Stuijfzand, R.S. Driessen, P.G. Raijmakers, M.T. Rijnierse, J. Maeremans, M.R. Hollander, A.A. Lammertsma, A.C. van Rossum, J. Dens, A. Nap, N. van Royen, P. Knaapen (2017) Prevalence of ischaemia in patients with a chronic total occlusion and preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 18(9): 1025-1033.
[26] Q. Qin, J. Qian, J. Ma, L. Ge, J. Ge (2016) Relationship between thrombospondin-1, endostatin, angiopoietin-2, and coronary collateral development in patients with chronic total occlusion. Medicine (Baltimore) 95(33): e4524.
[27] M. Sahin, S. Demir, M.E. Kalkan, B. Ozkan, G. Alici, K.C. Cakalagaoglu, M.V. Yazicioglu, S. Sarikaya, M. Biteker, M.M. Turkmen (2014) The relationship between gamma-glutamyltransferase and coronary collateral circulation in patients with chronic total occlusion. Anadolu Kardiyol Derg 14(1): 48-54.
[28] A.B. Nacar, A. Erayman, M. Kurt, E. Buyukkaya, M.F. Karakas, A.B. Akcay, S. Buyukkaya, N. Sen (2015) The relationship between coronary collateral circulation and neutrophil/lymphocyte ratio in patients with coronary chronic total occlusion. Med Princ Pract 24(1): 65-9.
[29] M. Kalkan, M. Sahin, A. Kalkan, A. Guler, M. Tas, M. Bulut, S. Demir, R. Acar, U. Arslantas, B. Ozturkeri, Y. Guler, M. Akcakoyun (2014) The relationship between the neutrophil-lymphocyte ratio and the coronary collateral circulation in patients with chronic total occlusion. Perfusion 29(4): 360-366.
[30] E. Sogut, H. Kadi, M. Karayakali, C. Mertoglu (2015) The association of plasma vitamin A and E levels with coronary collateral circulation. Atherosclerosis 239(2): 547-51.
[31] Y. Shen, F.H. Ding, R.Y. Zhang, Q. Zhang, L. Lu, W.F. Shen (2016) Association of serum mimecan with angiographic coronary collateralization in patients with stable coronary artery disease and chronic total occlusion. Atherosclerosis 252: 75-81.
[32] K.M. Gurses, M.U. Yalcin, D. Kocyigit, M.S. Besler, H. Canpinar, B. Evranos, H. Yorgun, M.L. Sahiner, E.B. Kaya, N. Ozer, D. Guc, K. Aytemir, L. Tokgozoglu (2019) The association between serum angiogenin and osteopontin levels and coronary collateral circulation in patients with chronic total occlusion. Anatol J Cardiol 22(2): 77-84.
[33] N. Hakimzadeh, A.Y. Nossent, A.M. van der Laan, S.H. Schirmer, M.W. de Ronde, S.J. Pinto-Sietsma, N. van Royen, P.H. Quax, I.E. Hoefer, J.J. Piek (2015) Circulating MicroRNAs Characterizing Patients with Insufficient Coronary Collateral Artery Function. PLoS One 10(9): e0137035.
[34] D. Kir, E. Schnettler, S. Modi, S. Ramakrishnan (2018) Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis 21(4): 699-710.
[35] K. Fitzgerald, S. White, A. Borodovsky, B.R. Bettencourt, A. Strahs, V. Clausen, P. Wijngaard, J.D. Horton, J. Taubel, A. Brooks, C. Fernando, R.S. Kauffman, D. Kallend, A. Vaishnaw, A. Simon (2017) A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N Engl J Med 376(1): 41-51.
[36] M.S. Sabatine, R.P. Giugliano, A.C. Keech, N. Honarpour, S.D. Wiviott, S.A. Murphy, J.F. Kuder, H. Wang, T. Liu, S.M. Wasserman, P.S. Sever, T.R. Pedersen (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 376(18): 1713-1722.
[37] U.K. Allahwala, J. Weaver, R. Bhindi (2019) Animal chronic total occlusion models: A review of the current literature and future goals. Thromb Res 177: 83-90.
[38] D. Sun, J. Wang, Y. Tian, K. Narsinh, H. Wang, C. Li, X. Ma, Y. Wang, D. Wang, J.C. Wu, J. Tian, F. Cao (2012) Multimodality imaging evaluation of functional and clinical benefits of percutaneous coronary intervention in patients with chronic total occlusion lesion. Theranostics 2(8): 788-800.