Ahmed, N. (2017). Failing States, Collapsing Systems: BioPhysical Triggers of Political Violence. Springer International Publishing. https://doi.org/10.1007/978-3-319-47816-6
Annila, A., & Kuismanen, E. (2009). Natural hierarchy emerges from energy dispersal. BioSystems, 95(3), 227–233. https://doi.org/10.1016/j.biosystems.2008.10.008
Arto, I., Capellán-Pérez, I., Lago, R., Bueno, G., & Bermejo, R. (2016). The energy requirements of a developed world. Energy for Sustainable Development, 33, 1–13. https://doi.org/10.1016/j.esd.2016.04.001
BP (2019). BP Statistical Review of World Energy. Published Online at OurWorldInData.Org. Retrieved from: ‘https://Ourworldindata.Org/Energy-Production-and-Changing-Energy-Sources [Online Resource Accessed November 14th, 2019].
Brand-Correa, L. I., & Steinberger, J. K. (2017). A Framework for Decoupling Human Need Satisfaction From Energy Use. Ecological Economics, 141, 43–52. https://doi.org/10.1016/j.ecolecon.2017.05.019
Brown, J. H., Burnside, W. R., Davidson, A. D., DeLong, J. P., Dunn, W. C., Hamilton, M. J., Mercado-Silva, N., Nekola, J. C., Okie, J. G., Woodruff, W. H., & Zuo, W. (2011). Energetic Limits to Economic Growth. BioScience, 61(1), 19–26. https://doi.org/10.1525/bio.2011.61.1.7
Burger, O., DeLong, J. P., & Hamilton, M. J. (2011). Industrial energy use and the human life history. Sci. Rep., 1(56), 1–7. https://doi.org/10.1038/srep00056
Chapman, I. (2014). The end of Peak Oil? Why this topic is still relevant despite recent denials. Energy Policy, 64, 93–101. https://doi.org/10.1016/j.enpol.2013.05.010
Daly, H. (2014). From Uneconomic Growth to a Steady-State Economy (E. Elgar (ed.)). Northampton.
Ellen MacArthur Foundation. (2013). Towards the circular economy: Economic and business rationale for an accelerated transition.
Escala, A. (2019). The principle of similitude in biology From allometry to the formulation of dimensionally homogenous “Laws.” Theoretical Ecology, 12, 415–425. https://doi.org/10.1007/s12080-019-0408-5
Feldman, H. A., & McMahon, T. A. (1983). The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respiration Physiology, 52, 149–163.
Fishman, T., Schandl, H., Tanikawa, H., Walker, P., & Krausmann, F. (2014). Accounting for the Material Stock of Nations. Journal of Industrial Ecology, 18(3), 407–420. https://doi.org/10.1111/jiec.12114
Giurco, D., Dominish, E., Florin, N., Watari, T., & McLellan, B. (2019). Requirements for minerals and metals for 100% renewable scenarios. In Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5C and +2C (pp. 437–457). Springer International Publishing. https://doi.org/10.1007/978-3-030-05843-2_11
Goldemberg, J., Johansson, T., Reddy, A., & Williams, R. (1985). Basic needs and much more with one kilowatt per capita. Ambio, 14(4/5), 190–200. http://econpapers.repec.org/paper/hdrhdocpa/ hdocpa-2001-02.htm
Grubler, A. (2012). Energy transitions research: Insights and cautionary tales. Energy Policy, 50, 8–16. https://doi.org/10.1016/j.enpol.2012.02.070
Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D. L., Rao, N. D., Riahi, K., Rogelj, J., De Stercke, S., Cullen, J., Frank, S., Fricko, O., Guo, F., Gidden, M., Havlík, P., Huppmann, D., Kiesewetter, G., Rafaj, P., … Valin, H. (2018). A low energy demand scenario for meeting the 1.5 °c target and sustainable development goals without negative emission technologies. Nature Energy, 3(6), 515–527. https://doi.org/10.1038/s41560-018-0172-6
Haberl, H., Wiedenhofer, D., Pauliuk, S., Krausmann, F., Müller, D. B., & Fischer-Kowalski, M. (2019). Contributions of sociometabolic research to sustainability science. In Nature Sustainability (Vol. 2, Issue 3, pp. 173–184). Nature Publishing Group. https://doi.org/10.1038/s41893-019-0225-2
Heusner, A. A. (1982). Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respiration Physiology, 48, 1–12.
Hulbert, A. (2014). A Sceptics View: “Kleiber’s Law” or the “3/4 Rule” is neither a Law nor a Rule but Rather an Empirical Approximation. Systems, 2(2), 186–202. https://doi.org/10.3390/systems2020186
IEA. (2019). Global Energy & CO2 Status Report 2018: The latest trends in energy and emissions in 2018. https://webstore.iea.org/download/direct/2461?fileName=Global_Energy_and_CO2_Status_Report_2018.pdf
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (S. Díaz, J. Settele, E. S. Brondizio, H. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, … C. N. Zayas (eds.)). IPBES secretariat.
Kleiber, M. (1961). The Fire of Life: an Introduction to Animal Energetics (Revised ed). Wiley.
Koziowski, J., & Weiner, J. (1997). Interspecific allometries are by-products of body size optimization. Am. Nat, 149(2), 352–380. http://www.journals.uchicago.edu/t-and-c
Krausmann, F., Lauk, C., Haas, W., & Wiedenhofer, D. (2018). From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Global Environmental Change, 52(April), 131–140. https://doi.org/10.1016/j.gloenvcha.2018.07.003
Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H., & Haberl, H. (2017). Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proceedings of the National Academy of Sciences, 114(8), 1880–1885. https://doi.org/10.1073/pnas.1613773114
Kuhn, T. (1962). The Structure of Scientific Revolutions. University of Chicago Press.
Lambert, J. G., Hall, C. A. S., Balogh, S., Gupta, A., & Arnold, M. (2014). Energy, EROI and quality of life. Energy Policy, 64, 153–167. https://doi.org/10.1016/j.enpol.2013.07.001
Maino, J. L., Kearney, M. R., Nisbet, R. M., & Kooijman, S. A. L. M. (2014). Reconciling theories for metabolic scaling. Journal of Animal Ecology, 83(1), 20–29. https://doi.org/10.1111/1365-2656.12085
Martínez, D. M., & Ebenhack, B. W. (2008). Understanding the role of energy consumption in human development through the use of saturation phenomena. Energy Policy, 36(4), 1430–1435. https://doi.org/10.1016/j.enpol.2007.12.016
MEA. (2005). Ecosystems and human well-being: synthesis. Island Press.
Mohr, S. H., Wang, J., Ellem, G., Ward, J., & Giurco, D. (2015). Projection of world fossil fuels by country. Fuel, 141, 120–135. https://doi.org/10.1016/j.fuel.2014.10.030
Moreau, V., Dos Reis, P. C., & Vuille, F. (2019). Enough metals? Resource constraints to supply a fully renewable energy system. Resources, 8(1). https://doi.org/10.3390/resources8010029
Moriarty, P., & Honnery, D. (2009). What energy levels can the Earth sustain? Energy Policy, 37, 2469–2474. https://doi.org/10.1016/j.enpol.2009.03.006
Moriarty, P., & Honnery, D. (2016). Can renewable energy power the future? Energy Policy, 93, 3–7. https://doi.org/10.1016/j.enpol.2016.02.051
Murphy, D. J. (2014). The implications of the declining energy return on investment of oil production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(20130126). https://doi.org/10.1098/rsta.2013.0126
Pasten, C., & Santamarina, J. C. (2012). Energy and quality of life. Energy Policy, 49, 468–476. https://doi.org/10.1016/j.enpol.2012.06.051
Pullinger, M. (2014). Working time reduction policy in a sustainable economy: Criteria and options for its design. Ecological Economics, 103, 11–19. https://doi.org/10.1016/j.ecolecon.2014.04.009
Ramsey, F. L., & Schafer, D. W. (2013). The Statistical Sleuth: A Course in Methods of Data Analysis (3rd editio). Cengage Learning.
Rees, W. E. (2012). Cities as Dissipative Structures: Global Change and the Vulnerability of Urban Civilization. In M. Weinstein & R. Turner (Eds.), Sustainability Science. Springer. https://doi.org/https://doi.org/10.1007/978-1-4614-3188-6_12
Rye, C. D., & Jackson, T. (2018). A review of EROEI-dynamics energy-transition models. Energy Policy, 122, 260. https://doi.org/10.1016/j.enpol.2018.06.041
Schmelzer, M. (2015). The growth paradigm: History, hegemony, and the contested making of economic growthmanship. Ecological Economics, 118, 262–271.
Schulz, T. F., Kypreos, S., Barreto, L., & Wokaun, A. (2008). Intermediate steps towards the 2000 W society in Switzerland : An energy – economic scenario analysis. Energy Policy, 36, 1303–1305. https://doi.org/10.1016/j.enpol.2007.12.006
Smil, V. (2001). Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press.
Smil, V. (2003). Energy at the crossroads: Global Perspectives and Uncertainties. MIT Press.
Smil, V. (2005). Creating the Twentieth Century: Technical Innovations of 1867-1914 and their lasting impacts. Oxford University Press.
Smil, V. (2008). Energy in Nature and Society: General Energetics of complex systems. The MIT Press.
Smil, V. (2016). Examining energy transitions: A dozen insights based on performance. Energy Research and Social Science, 22, 194–197. https://doi.org/10.1016/j.erss.2016.08.017
Smil, V. (2017). Energy Transitions: Global and National Perspectives. Published Online at OurWorldInData.Org. Retrieved from: ‘https://Ourworldindata.Org/Energy-Production-and-Changing-Energy-Sources’[Online Resource Accessed November 14th, 2019].
Sovacool, B. K. (2016). How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Research and Social Science, 13, 202–215. https://doi.org/10.1016/j.erss.2015.12.020
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., De Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sörlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223). https://doi.org/10.1126/science.1259855
Thommen, A., Werner, S., Frank, O., Philipp, J., Knittelfelder, O., Quek, Y., Fahmy, K., Shevchenko, A., Friedrich, B. M., Jü Licher, F., & Rink, J. C. (2019). Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians. ELife, 8, 1–29. https://doi.org/10.7554/eLife.38187.001
Tong, D., Zhang, Q., Zheng, Y., Caldeira, K., Shearer, C., Hong, C., Qin, Y., & Davis, S. J. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 1. https://doi.org/10.1038/s41586-019-1364-3
U.S. Energy Information Administration. (2019). International Energy Statistics. Published Online at TheShiftProject.Org. Retrieved from: ‘http://Www.Tsp-Data-Portal.Org/Energy-Consumption-Statistics#tspQvChart’[Online Resource Accessed November 14th, 2019].
Valero, A., Valero, A., Calvo, G., Ortego, A., Ascaso, S., & Palacios, J.-L. (2018). Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy, 159, 1175–1184. https://doi.org/10.1016/j.energy.2018.06.149
van Ruijven, B. J., De Cian, E., & Sue Wing, I. (2019). Amplification of future energy demand growth due to climate change. Nature Communications, 10(1), 2762. https://doi.org/10.1038/s41467-019-10399-3
Vanhulst, J., & Beling, A. E. (2014). Buen vivir: Emergent discourse within or beyond sustainable development? Ecological Economics. https://doi.org/10.1016/j.ecolecon.2014.02.017
West, G. B., & Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. In Journal of Experimental Biology (Vol. 208, Issue 9, pp. 1575–1592). https://doi.org/10.1242/jeb.01589
West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284(5420), 1677–1679. https://doi.org/10.1126/science.284.5420.1677
World Nuclear Association. (2019). Harmony: What would power our electric future? http://www.world-nuclear.org/our-association/what-we-do/the-harmony-programme.aspx