Agius, A.M., Smallman, L.A., Pahor, A.L., 1998. Age, smoking and nasal ciliary beat frequency. Clin Otolaryngol Allied Sci 23, 227–230. https://doi.org/10.1046/j.1365-2273.1998.00141.x
Ahmadi, M., Sharifi, A., Dorosti, S., Jafarzadeh Ghoushchi, S., Ghanbari, N., 2020. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of The Total Environment 729, 138705. https://doi.org/10.1016/j.scitotenv.2020.138705
Aidoo, E.N., Adebanji, A.O., Awashie, G.E., Appiah, S.K., 2021. The effects of weather on the spread of COVID-19: evidence from Ghana. Bull Natl Res Cent 45, 20. https://doi.org/10.1186/s42269-021-00484-3
Akimoto, H., Mori, Y., Sasaki, K., Nakanishi, H., Ohizumi, T., Itano, Y., 2015. Analysis of monitoring data of ground-level ozone in Japan for long-term trend during 1990–2010: Causes of temporal and spatial variation. Atmospheric Environment 102, 302–310. https://doi.org/10.1016/j.atmosenv.2014.12.001
Al Ashry, H.S., Modrykamien, A.M., 2014. Humidification during Mechanical Ventilation in the Adult Patient. BioMed Research International 2014, e715434. https://doi.org/10.1155/2014/715434
Alag, S., 2020. Analysis of COVID-19 clinical trials: A data-driven, ontology-based, and natural language processing approach. PLOS ONE 15, e0239694. https://doi.org/10.1371/journal.pone.0239694
Ali, N., Islam, F., 2020. The Effects of Air Pollution on COVID-19 Infection and Mortality—A Review on Recent Evidence. Front Public Health 8. https://doi.org/10.3389/fpubh.2020.580057
Al-Rousan, N., Al-Najjar, H., 2020. The correlation between the spread of COVID-19 infections and weather variables in 30 Chinese provinces and the impact of Chinese government mitigation plans. Eur Rev Med Pharmacol Sci 24, 4565–4571. https://doi.org/10.26355/eurrev_202004_21042
Analitis, A., de’ Donato, F., Scortichini, M., Lanki, T., Basagana, X., Ballester, F., Astrom, C., Paldy, A., Pascal, M., Gasparrini, A., Michelozzi, P., Katsouyanni, K., 2018. Synergistic Effects of Ambient Temperature and Air Pollution on Health in Europe: Results from the PHASE Project. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15091856
Andersson, E.M., Ögren, M., Molnár, P., Segersson, D., Rosengren, A., Stockfelt, L., 2020. Road traffic noise, air pollution and cardiovascular events in a Swedish cohort. Environmental Research 185, 109446. https://doi.org/10.1016/j.envres.2020.109446
Andronache, C., 2016. Dependence of Daily Aerosol Wet Deposition on Precipitation at Appalachian Mountains Site in the United States. Aerosol Air Qual. Res. 16, 665–673. https://doi.org/10.4209/aaqr.2015.05.0322
Anenberg Susan C., Horowitz Larry W., Tong Daniel Q., West J. Jason, 2010. An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling. Environmental Health Perspectives 118, 1189–1195. https://doi.org/10.1289/ehp.0901220
Aslam, B., Khalil, U., Azam, U., Maqsoom, A., 2020. A correlation study between weather and atmosphere with COVID-19 pandemic in Islamabad, Pakistan. Spat. Inf. Res. https://doi.org/10.1007/s41324-020-00366-2
Asraf, H.M., Nooritawati, M.T., Rizam, M.S.B.S., 2012. A Comparative Study in Kernel-Based Support Vector Machine of Oil Palm Leaves Nutrient Disease. Procedia Engineering, International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) 41, 1353–1359. https://doi.org/10.1016/j.proeng.2012.07.321
Auler, A.C., Cássaro, F.A.M., da Silva, V.O., Pires, L.F., 2020. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Science of The Total Environment 729, 139090. https://doi.org/10.1016/j.scitotenv.2020.139090
Awasthi, A., Sharma, A., Kaur, P., Gugamsetty, B., Kumar, A., 2020. Statistical interpretation of environmental influencing parameters on COVID-19 during the lockdown in Delhi, India. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-01000-9
Azuma, K., Yanagi, U., Kagi, N., Kim, H., Ogata, M., Hayashi, M., 2020. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environmental Health and Preventive Medicine 25, 66. https://doi.org/10.1186/s12199-020-00904-2
Babu, S.R., Rao, N.N., Kumar, S.V., Paul, S., Pani, S.K., 2020. Plausible Role of Environmental Factors on COVID-19 Transmission in the Megacity Delhi, India. Aerosol Air Qual. Res. 20, 2075–2084. https://doi.org/10.4209/aaqr.2020.06.0314
Badman, D.G., Jaffé, E.R., 1996. Blood and air pollution: State of knowledge and research needs. Otolaryngology - Head and Neck Surgery 114, 205–208. https://doi.org/10.1016/S0194-5998(96)70166-3
Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R.S., Brauer, M., Cohen, A.J., Stanaway, J.D., Beig, G., Joshi, T.K., Aggarwal, A.N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D.K., Kumar, G.A., Varghese, C.M., Muraleedharan, P., Agrawal, A., Anjana, R.M., Bhansali, A., Bhardwaj, D., Burkart, K., Cercy, K., Chakma, J.K., Chowdhury, S., Christopher, D.J., Dutta, E., Furtado, M., Ghosh, S., Ghoshal, A.G., Glenn, S.D., Guleria, R., Gupta, R., Jeemon, P., Kant, R., Kant, S., Kaur, T., Koul, P.A., Krish, V., Krishna, B., Larson, S.L., Madhipatla, K., Mahesh, P.A., Mohan, V., Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Nguyen, G., Odell, C.M., Pandian, J.D., Prabhakaran, D., Prabhakaran, P., Roy, A., Salvi, S., Sambandam, S., Saraf, D., Sharma, M., Shrivastava, A., Singh, V., Tandon, N., Thomas, N.J., Torre, A., Xavier, D., Yadav, G., Singh, S., Shekhar, C., Vos, T., Dandona, R., Reddy, K.S., Lim, S.S., Murray, C.J.L., Venkatesh, S., Dandona, L., 2019. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. The Lancet Planetary Health 3, e26–e39. https://doi.org/10.1016/S2542-5196(18)30261-4
Barreca, A.I., 2012. Climate change, humidity, and mortality in the United States. Journal of Environmental Economics and Management 63, 19–34. https://doi.org/10.1016/j.jeem.2011.07.004
Bashir, M.F., Ma, B., Bilal, Komal, B., Bashir, M.A., Tan, D., Bashir, M., 2020a. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of The Total Environment 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835
Bashir, M.F., Ma, B.J., Bilal, null, Komal, B., Bashir, M.A., Farooq, T.H., Iqbal, N., Bashir, M., 2020b. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ Res 187, 109652. https://doi.org/10.1016/j.envres.2020.109652
Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G., 2008. Support Vector Machines and Kernels for Computational Biology. PLOS Computational Biology 4. https://doi.org/10.1371/journal.pcbi.1000173
Benjamin, S.F., 1975. Study of Topographical Effects on Dispersion of Pollution, in: Frenkiel, F.N., Munn, R.E. (Eds.), Advances in Geophysics, International Union of Theoretical and Applied Mechanics and International Union of Geodesy and Geophysics. Elsevier, p. 380. https://doi.org/10.1016/S0065-2687(08)60602-0
Bentayeb, M., Wagner, V., Stempfelet, M., Zins, M., Goldberg, M., Pascal, M., Larrieu, S., Beaudeau, P., Cassadou, S., Eilstein, D., Filleul, L., Le Tertre, A., Medina, S., Pascal, L., Prouvost, H., Quénel, P., Zeghnoun, A., Lefranc, A., 2015. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study. Environment International 85, 5–14. https://doi.org/10.1016/j.envint.2015.08.006
Bertuzzo, E., Mari, L., Pasetto, D., Miccoli, S., Casagrandi, R., Gatto, M., Rinaldo, A., 2020. The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures. Nat Commun 11, 4264. https://doi.org/10.1038/s41467-020-18050-2
Bhaskar, B.V., Mehta, V.M., 2010. Atmospheric Particulate Pollutants and their Relationship with Meteorology in Ahmedabad. Aerosol Air Qual. Res. 10, 301–315. https://doi.org/10.4209/aaqr.2009.10.0069
Bhatt, C.M., Gupta, A., Roy, A., Dalal, P., Chauhan, P., 2021. Geospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data. Geomatics, Natural Hazards and Risk 12, 84–102. https://doi.org/10.1080/19475705.2020.1861113
Bherwani, H., Gupta, A., Anjum, S., Anshul, A., Kumar, R., 2020. Exploring dependence of COVID-19 on environmental factors and spread prediction in India. npj Climate and Atmospheric Science 3, 1–13. https://doi.org/10.1038/s41612-020-00142-x
Bochenek, B., Jankowski, M., Gruszczynska, M., Nykiel, G., Gruszczynski, M., Jaczewski, A., Ziemianski, M., Pyrc, R., Figurski, M., Pinkas, J., 2021. Impact of Meteorological Conditions on the Dynamics of the COVID-19 Pandemic in Poland. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18083951
Borah, M.J., Hazarika, B., Panda, S.K., Nieto, J.J., 2020. Examining the correlation between the weather conditions and COVID-19 pandemic in India: A mathematical evidence. Results in Physics 19, 103587. https://doi.org/10.1016/j.rinp.2020.103587
Bourdrel, T., Annesi-Maesano, I., Alahmad, B., Maesano, C.N., Bind, M.-A., 2021. The impact of outdoor air pollution on COVID-19: a review of evidence from in vitro, animal, and human studies. European Respiratory Review 30. https://doi.org/10.1183/16000617.0242-2020
Bourdrel, T., Bind, M.-A., Béjot, Y., Morel, O., Argacha, J.-F., 2017. Cardiovascular effects of air pollution. Arch Cardiovasc Dis 110, 634–642. https://doi.org/10.1016/j.acvd.2017.05.003
Briz-Redón, Á., Serrano-Aroca, Á., 2020. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Science of The Total Environment 728, 138811. https://doi.org/10.1016/j.scitotenv.2020.138811
Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. The Lancet 360, 1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8
Byass, P., 2020. Eco-epidemiological assessment of the COVID-19 epidemic in China, January–February 2020. Global Health Action 13, 1760490. https://doi.org/10.1080/16549716.2020.1760490
Chauhan, A.J., Johnston, S.L., 2003. Air pollution and infection in respiratory illness. British Medical Bulletin 68, 95–112. https://doi.org/10.1093/bmb/ldg022
Chen, J.-C., Wang, X., Wellenius, G.A., Serre, M.L., Driscoll, I., Casanova, R., McArdle, J.J., Manson, J.E., Chui, H.C., Espeland, M.A., 2015. Ambient air pollution and neurotoxicity on brain structure: Evidence from women’s health initiative memory study. Annals of Neurology 78, 466–476. https://doi.org/10.1002/ana.24460
Chen, S., Prettner, K., Kuhn, M., Geldsetzer, P., Wang, C., Bärnighausen, T., Bloom, D.E., 2021. Climate and the spread of COVID-19. Sci Rep 11, 9042. https://doi.org/10.1038/s41598-021-87692-z
Chen, T.-M., Gokhale, J., Shofer, S., Kuschner, W.G., 2007. Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333, 249–256. https://doi.org/10.1097/MAJ.0b013e31803b900f
Chudnovsky, A.A., Koutrakis, P., Kloog, I., Melly, S., Nordio, F., Lyapustin, A., Wang, Y., Schwartz, J., 2014. Fine particulate matter predictions using high resolution Aerosol Optical Depth (AOD) retrievals. Atmospheric Environment 89, 189–198. https://doi.org/10.1016/j.atmosenv.2014.02.019
Ciencewicki, J., Jaspers, I., 2007. Air Pollution and Respiratory Viral Infection. Inhalation Toxicology 19, 1135–1146. https://doi.org/10.1080/08958370701665434
Coccia, M., 2021. How do low wind speeds and high levels of air pollution support the spread of COVID-19? Atmospheric Pollution Research 12, 437–445. https://doi.org/10.1016/j.apr.2020.10.002
Coker, E.S., Cavalli, L., Fabrizi, E., Guastella, G., Lippo, E., Parisi, M.L., Pontarollo, N., Rizzati, M., Varacca, A., Vergalli, S., 2020. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. Environ Resource Econ 76, 611–634. https://doi.org/10.1007/s10640-020-00486-1
Comunian, S., Dongo, D., Milani, C., Palestini, P., 2020. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17124487
Cragg, L., Williams, S., Chavannes, N.H., 2016. FRESH AIR: an implementation research project funded through Horizon 2020 exploring the prevention, diagnosis and treatment of chronic respiratory diseases in low-resource settings. npj Primary Care Respiratory Medicine 26, 1–5. https://doi.org/10.1038/npjpcrm.2016.35
Dalziel, B.D., Kissler, S., Gog, J.R., Viboud, C., Bjørnstad, O.N., Metcalf, C.J.E., Grenfell, B.T., 2018. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 362, 75–79. https://doi.org/10.1126/science.aat6030
D’Amato, M., Molino, A., Calabrese, G., Cecchi, L., Annesi-Maesano, I., D’Amato, G., 2018. The impact of cold on the respiratory tract and its consequences to respiratory health. Clinical and Translational Allergy 8, 20. https://doi.org/10.1186/s13601-018-0208-9
Das, S., Gupta, A., 2021. Multi-criteria decision based geospatial mapping of flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha basin, India. Geoscience Frontiers 12, 101206. https://doi.org/10.1016/j.gsf.2021.101206
Das, S., Gupta, A., Ghosh, S., 2017. Exploring groundwater potential zones using MIF technique in semi-arid region: a case study of Hingoli district, Maharashtra. Spat. Inf. Res. 25, 749–756. https://doi.org/10.1007/s41324-017-0144-0
Davidson, C.I., Phalen, R.F., Solomon, P.A., 2005. Airborne Particulate Matter and Human Health: A Review. Aerosol Science and Technology 39, 737–749. https://doi.org/10.1080/02786820500191348
Deng, X., Rui, W., Zhang, F., Ding, W., 2013. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29, 143–157. https://doi.org/10.1007/s10565-013-9242-5
Desideri, D., Roselli, C., Meli, M.A., Feduzi, L., 2007. Comparison between the diurnal trends of ozone and radon gas concentrations measured at ground in the semi-rural site of Central Italy. J Radioanal Nucl Chem 273, 345–351. https://doi.org/10.1007/s10967-007-6871-2
Dowell, S.F., 2001. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg Infect Dis 7, 369–374. https://doi.org/10.3201/eid0703.010301
Emediegwu, L.E., 2021. Health impacts of daily weather fluctuations: Empirical evidence from COVID-19 in U.S. counties. Journal of Environmental Management 291, 112662. https://doi.org/10.1016/j.jenvman.2021.112662
Engel-Cox, J.A., Hoff, R.M., Haymet, A.D.J., 2004. Recommendations on the Use of Satellite Remote-Sensing Data for Urban Air Quality. Journal of the Air & Waste Management Association 54, 1360–1371. https://doi.org/10.1080/10473289.2004.10471005
Eslami, H., Jalili, M., 2020. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express 10. https://doi.org/10.1186/s13568-020-01028-0
Eum, Y., Song, I., Kim, H.-C., Leem, J.-H., Kim, S.-Y., 2015. Computation of geographic variables for air pollution prediction models in South Korea. Environ Health Toxicol 30. https://doi.org/10.5620/eht.e2015010
Fadli, A., Nugraha, A.W.W., Aliim, M.S., Taryana, A., Kurniawan, Y.I., Purnomo, W.H., 2020. Simple Correlation Between Weather and COVID-19 Pandemic Using Data Mining Algorithms. IOP Conf. Ser.: Mater. Sci. Eng. 982, 012015. https://doi.org/10.1088/1757-899X/982/1/012015
Fares, A., 2013. Factors Influencing the Seasonal Patterns of Infectious Diseases. Int J Prev Med 4, 128–132.
Fawad, M., Mubarik, S., Malik, S.S., Ren, J., 2021. Statistical analysis of COVID-19 infection caused by environmental factors: Evidence from Pakistan. Life Sci 269, 119093. https://doi.org/10.1016/j.lfs.2021.119093
Feuyit, G., Nzali, S., Lambi, J.N., Laminsi, S., 2019. Air Quality and Human Health Risk Assessment in the Residential Areas at the Proximity of the Nkolfoulou Landfill in Yaoundé Metropolis, Cameroon. Journal of Chemistry 2019, e3021894. https://doi.org/10.1155/2019/3021894
Ficetola, G.F., Rubolini, D., 2021. Containment measures limit environmental effects on COVID-19 early outbreak dynamics. Science of The Total Environment 761, 144432. https://doi.org/10.1016/j.scitotenv.2020.144432
Fisher, B., 2002. Meteorological factors influencing the occurrence of air pollution episodes involving chimney plumes. Meteorological Applications 9, 199–210. https://doi.org/10.1017/S1350482702002050
Gallerani, M., Reverberi, R., Salmi, R., Smolensky, M.H., Manfredini, R., 2013. Seasonal variation of platelets in a cohort of Italian blood donors: a preliminary report. European Journal of Medical Research 18, 31. https://doi.org/10.1186/2047-783X-18-31
Gauderman, W.J., Vora, H., McConnell, R., Berhane, K., Gilliland, F., Thomas, D., Lurmann, F., Avol, E., Kunzli, N., Jerrett, M., Peters, J., 2007. Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study. The Lancet 369, 571–577. https://doi.org/10.1016/S0140-6736(07)60037-3
Gautam, S., Samuel, C., Gautam, A.S., Kumar, S., 2021. Strong link between coronavirus count and bad air: a case study of India. Environ Dev Sustain. https://doi.org/10.1007/s10668-021-01366-4
Ge, X.-Y., Li, J.-L., Yang, X.-L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., Peng, C., Zhang, Y.-J., Luo, C.-M., Tan, B., Wang, N., Zhu, Y., Crameri, G., Zhang, S.-Y., Wang, L.-F., Daszak, P., Shi, Z.-L., 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538. https://doi.org/10.1038/nature12711
Gettelman, A., Sherwood, S.C., 2016. Processes Responsible for Cloud Feedback. Curr Clim Change Rep 2, 179–189. https://doi.org/10.1007/s40641-016-0052-8
Ghude, S.D., Chate, D.M., Jena, C., Beig, G., Kumar, R., Barth, M.C., Pfister, G.G., Fadnavis, S., Pithani, P., 2016. Premature mortality in India due to PM 2.5 and ozone exposure: Premature Mortality in India. Geophys. Res. Lett. 43, 4650–4658. https://doi.org/10.1002/2016GL068949
Gorbalenya, A.E., Baker, S.C., Baric, R.S., Groot, R.J. de, Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I., Ziebuhr, J., 2020. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv 2020.02.07.937862. https://doi.org/10.1101/2020.02.07.937862
Guan, W., Ni, Z., Hu, Yu, Liang, W., Ou, C., He, J., Liu, L., Shan, H., Lei, C., Hui, D.S.C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S., Wang, Jin-lin, Liang, Z., Peng, Y., Wei, L., Liu, Y., Hu, Ya-hua, Peng, P., Wang, Jian-ming, Liu, J., Chen, Z., Li, G., Zheng, Z., Qiu, S., Luo, J., Ye, C., Zhu, S., Zhong, N., 2020. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382, 1708–1720. https://doi.org/10.1056/NEJMoa2002032
Gujral, H., Sinha, A., 2021. Association between exposure to airborne pollutants and COVID-19 in Los Angeles, United States with ensemble-based dynamic emission model. Environmental Research 194, 110704. https://doi.org/10.1016/j.envres.2020.110704
Gunthe, S.S., Swain, B., Patra, S.S., Amte, A., 2020. On the global trends and spread of the COVID-19 outbreak: preliminary assessment of the potential relation between location-specific temperature and UV index. J Public Health (Berl.). https://doi.org/10.1007/s10389-020-01279-y
Guo, C., Bo, Y., Lin, C., Li, H.B., Zeng, Y., Zhang, Y., Hossain, M.S., Chan, J.W.M., Yeung, D.W., Kwok, K.-O., Wong, S.Y.S., Lau, A.K.H., Lao, X.Q., 2021. Meteorological factors and COVID-19 incidence in 190 countries: An observational study. Sci Total Environ 757, 143783. https://doi.org/10.1016/j.scitotenv.2020.143783
Guo, C., Zhang, Z., Lau, A.K.H., Lin, C.Q., Chuang, Y.C., Chan, J., Jiang, W.K., Tam, T., Yeoh, E.-K., Chan, T.-C., Chang, L.-Y., Lao, X.Q., 2018. Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: a longitudinal, cohort study. The Lancet Planetary Health 2, e114–e125. https://doi.org/10.1016/S2542-5196(18)30028-7
Gupta, A., Asopa, U., Bhattacharjee, R., 2019. Land Subsidence Monitoring in Jagadhri City Using Sentinel 1 Data and DInSAR Processing. Proceedings 24, 25. https://doi.org/10.3390/IECG2019-06230
Gupta, A., Banerjee, S., Das, S., 2020a. Significance of geographical factors to the COVID-19 outbreak in India. Model. Earth Syst. Environ. 6, 2645–2653. https://doi.org/10.1007/s40808-020-00838-2
Gupta, A., Bhatt, C.M., Roy, A., Chauhan, P., 2020d. COVID-19 lockdown a window of opportunity to understand the role of human activity on forest fire incidences in the Western Himalaya, India. CURRENT SCIENCE 119, 9.
Gupta, A., Kant, Y., Mitra, D., Chauhan, P., 2021. Spatio-temporal distribution of INSAT-3D AOD derived particulate matter concentration over India. Atmospheric Pollution Research 12, 159–172. https://doi.org/10.1016/j.apr.2020.08.031
Gupta, A., Moniruzzaman, M., Hande, A., Rousta, I., Olafsson, H., Mondal, K.K., 2020e. Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh. SN Appl. Sci. 2, 1993. https://doi.org/10.1007/s42452-020-03829-1
Gupta, A., Pradhan, B., 2020a. Impact of Daily Weather on COVID-19 outbreak in India. https://doi.org/10.1101/2020.06.15.20131490
Gupta, A., Pradhan, B., 2020b. Assessment of temporal trend of COVID-19 outbreak in India. https://doi.org/10.31219/osf.io/qyre6
Gupta, A., Pradhan, B., Maulud, K.N.A., 2020c. Estimating the Impact of Daily Weather on the Temporal Pattern of COVID-19 Outbreak in India. Earth Syst Environ 4, 523–534. https://doi.org/10.1007/s41748-020-00179-1
Gupta, P., Christopher, S.A., 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J. Geophys. Res. 114, D20205. https://doi.org/10.1029/2008JD011497
Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N., 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment 40, 5880–5892. https://doi.org/10.1016/j.atmosenv.2006.03.016
Gupta, S., Raghuwanshi, G.S., Chanda, A., 2020b. Effect of weather on COVID-19 spread in the US: A prediction model for India in 2020. Science of The Total Environment 728, 138860. https://doi.org/10.1016/j.scitotenv.2020.138860
Hahon, N., Booth, J.A., Green, F., Lewis, T.R., 1985. Influenza virus infection in mice after exposure to coal dust and diesel engine emissions. Environmental Research 37, 44–60. https://doi.org/10.1016/0013-9351(85)90048-9
Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., Megawati, D., Hayati, Z., Wagner, A.L., Mudatsir, M., 2020. Coronavirus disease 2019 (COVID-19): A literature review. Journal of Infection and Public Health 13, 667–673. https://doi.org/10.1016/j.jiph.2020.03.019
Hatzianastassiou, N., Matsoukas, C., Fotiadi, A., Pavlakis, K.G., Drakakis, E., Hatzidimitriou, D., Vardavas, I., 2005. Global distribution of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys. 21.
Hewson, E.W., Olsson, L.E., 1967. Lake Effects on Air Pollution Dispersion. Journal of the Air Pollution Control Association 17, 757–761. https://doi.org/10.1080/00022470.1967.10469069
Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S.I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T.M., Pillai, S.K., 2020. First Case of 2019 Novel Coronavirus in the United States. New England Journal of Medicine 382, 929–936. https://doi.org/10.1056/NEJMoa2001191
Hong, H., Pradhan, B., Bui, D.T., Xu, C., Youssef, A.M., Chen, W., 2017. Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics, Natural Hazards and Risk 8, 544–569. https://doi.org/10.1080/19475705.2016.1250112
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B., 2020a. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395, 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Huang, H., Liang, X., Huang, J., Yuan, Z., Ouyang, H., Wei, Y., Bai, X., 2020b. Correlations between Meteorological Indicators, Air Quality and the COVID-19 Pandemic in 12 Cities across China. J Environ Health Sci Engineer 18, 1491–1498. https://doi.org/10.1007/s40201-020-00564-y
Huang, Jing, Li, G., Xu, G., Qian, X., Zhao, Y., Pan, X., Huang, Jian, Cen, Z., Liu, Q., He, T., Guo, X., 2018. The burden of ozone pollution on years of life lost from chronic obstructive pulmonary disease in a city of Yangtze River Delta, China. Environmental Pollution 242, 1266–1273. https://doi.org/10.1016/j.envpol.2018.08.021
Huang, N.-H., Wang, Q., Xu, D.-Q., 2008. Immunological effect of PM2.5 on cytokine production in female Wistar rats. Biomed Environ Sci 21, 63–68. https://doi.org/10.1016/S0895-3988(08)60008-2
Hulin, M., Simoni, M., Viegi, G., Annesi-Maesano, I., 2012. Respiratory health and indoor air pollutants based on quantitative exposure assessments. European Respiratory Journal 40, 1033–1045. https://doi.org/10.1183/09031936.00159011
Iqbal, N., Fareed, Z., Shahzad, F., He, X., Shahzad, U., Lina, M., 2020. The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence. Science of The Total Environment 729, 138916. https://doi.org/10.1016/j.scitotenv.2020.138916
Islam, A.R.Md.T., Hasanuzzaman, Md., Azad, Md.A.K., Salam, R., Toshi, F.Z., Khan, Md.S.I., Alam, G.M.M., Ibrahim, S.M., 2020. Effect of meteorological factors on COVID-19 cases in Bangladesh. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-01016-1
Jacko, R., Breche, T.L., 2009. Air Pollution and Noise Control, in: Environmental Engineering. John Wiley & Sons, Ltd, pp. 309–393. https://doi.org/10.1002/9780470432822.ch4
Jacob, D.J., 2000. Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment 34, 2131–2159. https://doi.org/10.1016/S1352-2310(99)00462-8
Jacobson, L. da S.V., Hacon, S. de S., Castro, H.A. de, Ignotti, E., Artaxo, P., Saldiva, P.H.N., Leon, A.C.M.P. de, 2014. Acute Effects of Particulate Matter and Black Carbon from Seasonal Fires on Peak Expiratory Flow of Schoolchildren in the Brazilian Amazon. PLOS ONE 9, e104177. https://doi.org/10.1371/journal.pone.0104177
Jahangiri, Mehdi, Jahangiri, Milad, Najafgholipour, M., 2020. The sensitivity and specificity analyses of ambient temperature and population size on the transmission rate of the novel coronavirus (COVID-19) in different provinces of Iran. Sci Total Environ 728, 138872. https://doi.org/10.1016/j.scitotenv.2020.138872
Jain, M., Sharma, G.D., Goyal, M., Kaushal, R., Sethi, M., 2021. Econometric analysis of COVID-19 cases, deaths, and meteorological factors in South Asia. Environ Sci Pollut Res 28, 28518–28534. https://doi.org/10.1007/s11356-021-12613-6
Jamil, T., Alam, I.S., Gojobori, T., Duarte, C., 2020. No Evidence for Temperature-Dependence of the COVID-19 Epidemic. medRxiv 2020.03.29.20046706. https://doi.org/10.1101/2020.03.29.20046706
Jana, S., Gupta, A., Nath, A., 2020. Assessment of Global Performance on COVID-19 Research during 1990-2019: An Exploratory Scientometric Analysis 19.
Janssen, N.A.H., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L., ten Brink, H., Keuken, M., Atkinson, R.W., Anderson, H.R., Brunekreef, B., Cassee, F.R., 2011. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ Health Perspect 119, 1691–1699. https://doi.org/10.1289/ehp.1003369
Jayamurugan, R., Kumaravel, B., Palanivelraja, S., Chockalingam, M.P., 2013. Influence of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality in a Coastal Urban Area. International Journal of Atmospheric Sciences 2013, e264046. https://doi.org/10.1155/2013/264046
Jebur, M.N., Pradhan, B., Tehrany, M.S., 2014. Manifestation of LiDAR-Derived Parameters in the Spatial Prediction of Landslides Using Novel Ensemble Evidential Belief Functions and Support Vector Machine Models in GIS. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 8, 674–690. https://doi.org/10.1109/JSTARS.2014.2341276
Joshi, M., Pedersen, T., Maclin, R., 2005. A Comparative Study of Support Vector Machines Applied to the Supervised Word Sense Disambiguation Problem in the Medical Domain. Presented at the 2nd Indian International Conference on Artifitial Intelligence (IICAI-05), pp. 3449–3468.
Jung, R.G., Di Santo, P., Clifford, C., Prosperi-Porta, G., Skanes, S., Hung, A., Parlow, S., Visintini, S., Ramirez, F.D., Simard, T., Hibbert, B., 2021. Methodological quality of COVID-19 clinical research. Nature Communications 12, 943. https://doi.org/10.1038/s41467-021-21220-5
Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environmental Pollution, Proceedings of the 4th International Workshop on Biomonitoring of Atmospheric Pollution (With Emphasis on Trace Elements) 151, 362–367. https://doi.org/10.1016/j.envpol.2007.06.012
Karimian, H., Li, Q., Li, C., Jin, L., Fan, J., Li, Y., 2016. An Improved Method for Monitoring Fine Particulate Matter Mass Concentrations via Satellite Remote Sensing. Aerosol Air Qual. Res. 16, 1081–1092. https://doi.org/10.4209/aaqr.2015.06.0424
Kelly, M., Gillies, D., Todd, D.A., Lockwood, C., 2010. Heated humidification versus heat and moisture exchangers for ventilated adults and children. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD004711.pub2
Kelsall, J.E., Samet, J.M., Zeger, S.L., Xu, J., 1997. Air Pollution and Mortality in Philadelphia, 1974–1988. American Journal of Epidemiology 146, 750–762. https://doi.org/10.1093/oxfordjournals.aje.a009351
Khaniabadi, Y.O., Hopke, P.K., Goudarzi, G., Daryanoosh, S.M., Jourvand, M., Basiri, H., 2017. Cardiopulmonary mortality and COPD attributed to ambient ozone. Environmental Research 152, 336–341. https://doi.org/10.1016/j.envres.2016.10.008
Khorramdelazad, H., Kazemi, M.H., Najafi, A., Keykhaee, M., Zolfaghari Emameh, R., Falak, R., 2021. Immunopathological similarities between COVID-19 and influenza: Investigating the consequences of Co-infection. Microb Pathog 152, 104554. https://doi.org/10.1016/j.micpath.2020.104554
Kifer, D., Bugada, D., Villar-Garcia, J., Gudelj, I., Menni, C., Sudre, C., Vučković, F., Ugrina, I., Lorini, L.F., Posso, M., Bettinelli, S., Ughi, N., Maloberti, A., Epis, O., Giannattasio, C., Rossetti, C., Kalogjera, L., Peršec, J., Ollivere, L., Ollivere, B.J., Yan, H., Cai, T., Aithal, G.P., Steves, C.J., Kantele, A., Kajova, M., Vapalahti, O., Sajantila, A., Wojtowicz, R., Wierzba, W., Krol, Z., Zaczynski, A., Zycinska, K., Postula, M., Lukšić, I., Čivljak, R., Markotić, A., Brachmann, J., Markl, A., Mahnkopf, C., Murray, B., Ourselin, S., Valdes, A.M., Horcajada, J.P., Castells, X., Pascual, J., Allegri, M., Primorac, D., Spector, T.D., Barrios, C., Lauc, G., 2021. Effects of Environmental Factors on Severity and Mortality of COVID-19. Front. Med. 7. https://doi.org/10.3389/fmed.2020.607786
Kim, D., Chen, Z., Zhou, L.-F., Huang, S.-X., 2018. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med 4, 75–94. https://doi.org/10.1016/j.cdtm.2018.03.003
Kim, J.W., Park, S., Lim, C.W., Lee, K., Kim, B., 2014. The Role of Air Pollutants in Initiating Liver Disease. Toxicological Research 30, 65–70. https://doi.org/10.5487/TR.2014.30.2.065
Kirwa, K., Eckert, C.M., Vedal, S., Hajat, A., Kaufman, J.D., 2021. Ambient air pollution and risk of respiratory infection among adults: evidence from the multiethnic study of atherosclerosis (MESA). BMJ Open Respiratory Research 8, e000866. https://doi.org/10.1136/bmjresp-2020-000866
Kudo, E., Song, E., Yockey, L.J., Rakib, T., Wong, P.W., Homer, R.J., Iwasaki, A., 2019. Low ambient humidity impairs barrier function and innate resistance against influenza infection. PNAS 116, 10905–10910. https://doi.org/10.1073/pnas.1902840116
Kumar, G., Kumar, R.R., 2020. A correlation study between meteorological parameters and COVID-19 pandemic in Mumbai, India. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 14, 1735–1742. https://doi.org/10.1016/j.dsx.2020.09.002
Kumar, S., 2020. Effect of meteorological parameters on spread of COVID-19 in India and air quality during lockdown. Sci Total Environ 745, 141021. https://doi.org/10.1016/j.scitotenv.2020.141021
Kunz, C.U., Jörgens, S., Bretz, F., Stallard, N., Lancker, K.V., Xi, D., Zohar, S., Gerlinger, C., Friede, T., 2020. Clinical Trials Impacted by the COVID-19 Pandemic: Adaptive Designs to the Rescue? Statistics in Biopharmaceutical Research 12, 461–477. https://doi.org/10.1080/19466315.2020.1799857
Kurt, O.K., Zhang, J., Pinkerton, K.E., 2016. Pulmonary Health Effects of Air Pollution. Curr Opin Pulm Med 22, 138–143. https://doi.org/10.1097/MCP.0000000000000248
Kyung, S.Y., Jeong, S.H., 2020. Particulate-Matter Related Respiratory Diseases. Tuberc Respir Dis (Seoul) 83, 116–121. https://doi.org/10.4046/trd.2019.0025
Larsen, J.R., Martin, M.R., Martin, J.D., Kuhn, P., Hicks, J.B., 2020. Modeling the Onset of Symptoms of COVID-19. Front. Public Health 8. https://doi.org/10.3389/fpubh.2020.00473
Laumbach, R.J., Kipen, H.M., 2012. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution. J Allergy Clin Immunol 129, 3–13. https://doi.org/10.1016/j.jaci.2011.11.021
LaVoy, E.C.P., McFarlin, B.K., Simpson, R.J., 2011. Immune Responses to Exercising in a Cold Environment. Wilderness & Environmental Medicine 22, 343–351. https://doi.org/10.1016/j.wem.2011.08.005
Lee, A., Kinney, P., Chillrud, S., Jack, D., 2015. A Systematic Review of Innate Immunomodulatory Effects of Household Air Pollution Secondary to the Burning of Biomass Fuels. Annals of Global Health 81, 368. https://doi.org/10.1016/j.aogh.2015.08.006
Li, C., Bosch, C., Kang, S., Andersson, A., Chen, P., Zhang, Q., Cong, Z., Chen, B., Qin, D., Gustafsson, Ö., 2016. Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications 7, 12574. https://doi.org/10.1038/ncomms12574
Li, H., Xu, X.-L., Dai, D.-W., Huang, Z.-Y., Ma, Z., Guan, Y.-J., 2020. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. International Journal of Infectious Diseases 97, 278–282. https://doi.org/10.1016/j.ijid.2020.05.076
Li, P., Wang, Y., Peppelenbosch, M.P., Ma, Z., Pan, Q., 2021. Systematically comparing COVID-19 with the 2009 influenza pandemic for hospitalized patients. Int J Infect Dis 102, 375–380. https://doi.org/10.1016/j.ijid.2020.11.127
Li, R., Gong, J., Chen, L., Wang, Z., 2015. Estimating Ground-Level PM2.5 Using Fine-Resolution Satellite Data in the Megacity of Beijing, China. Aerosol Air Qual. Res. 15, 1347–1356. https://doi.org/10.4209/aaqr.2015.01.0009
Lin, S., Wei, D., Sun, Y., Chen, K., Yang, L., Liu, B., Huang, Q., Paoliello, M.M.B., Li, H., Wu, S., 2020. Region-specific air pollutants and meteorological parameters influence COVID-19: A study from mainland China. Ecotoxicology and Environmental Safety 204, 111035. https://doi.org/10.1016/j.ecoenv.2020.111035
Liu, B., Taioli, E., 2015. Seasonal Variations of Complete Blood Count and Inflammatory Biomarkers in the US Population - Analysis of NHANES Data. PLoS One 10. https://doi.org/10.1371/journal.pone.0142382
Liu, H., Fan, X., Wang, N., Zhang, Y., Yu, J., 2017. Exacerbating effects of PM2.5 in OVA-sensitized and challenged mice and the expression of TRPA1 and TRPV1 proteins in lungs. Journal of Asthma 54, 807–817. https://doi.org/10.1080/02770903.2016.1266495
Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., He, K., 2018. Ground-level ozone pollution and its health impacts in China. Atmospheric Environment 173, 223–230. https://doi.org/10.1016/j.atmosenv.2017.11.014
Liu, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., He, X., Wang, B., Fu, S., Niu, T., Yan, J., Shi, Y., Ren, X., Niu, J., Zhu, W., Li, S., Luo, B., Zhang, K., 2020b. Impact of meteorological factors on the COVID-19 transmission: A multi-city study in China. Science of The Total Environment 726, 138513. https://doi.org/10.1016/j.scitotenv.2020.138513
Liu, Q., Tan, Z.-M., Sun, J., Hou, Y., Fu, C., Wu, Z., 2020c. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 15, 044004. https://doi.org/10.1088/1748-9326/ab70bc
Liu, T., Hu, J., Xiao, J., He, G., Kang, M., Rong, Z., Lin, L., Zhong, H., Huang, Q., Deng, A., Zeng, W., Tan, X., Zeng, S., Zhu, Z., Li, J., Gong, D., Wan, D., Chen, S., Guo, L., Li, Y., Sun, L., Liang, W., Song, T., He, J., Ma, W., 2020a. Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China. bioRxiv 2020.01.25.919787. https://doi.org/10.1101/2020.01.25.919787
Liu, Yanli, Sun, W., Guo, Y., Chen, L., Zhang, L., Zhao, S., Long, D., Yu, L., 2020d. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets 1–7. https://doi.org/10.1080/09537104.2020.1754383
Liu, Yansui, Zhou, Y., Lu, J., 2020e. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci Rep 10, 14518. https://doi.org/10.1038/s41598-020-71338-7
Logan, J.A., Prather, M.J., Wofsy, S.C., McElroy, M.B., 1981. Tropospheric chemistry: A global perspective. Journal of Geophysical Research: Oceans 86, 7210–7254. https://doi.org/10.1029/JC086iC08p07210
Lowen, A.C., Mubareka, S., Steel, J., Palese, P., 2007. Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLOS Pathogens 3, e151. https://doi.org/10.1371/journal.ppat.0030151
Lytle, C.D., Sagripanti, J.-L., 2005. Predicted Inactivation of Viruses of Relevance to Biodefense by Solar Radiation. Journal of Virology 79, 14244–14252. https://doi.org/10.1128/JVI.79.22.14244-14252.2005
Ma, Y., Cheng, B., Shen, J., Wang, H., Feng, F., Zhang, Y., Jiao, H., 2021. Association between environmental factors and COVID-19 in Shanghai, China. Environ Sci Pollut Res Int 1–9. https://doi.org/10.1007/s11356-021-13834-5
Ma, Y., Zhao, Y., Liu, J., He, X., Wang, B., Fu, S., Yan, J., Niu, J., Zhou, J., Luo, B., 2020. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of The Total Environment 724, 138226. https://doi.org/10.1016/j.scitotenv.2020.138226
Maaoui, C., Pruski, A., 2008. A comparative study of SVM kernel applied to emotion recognition from physiological signals, in: 2008 5th International Multi-Conference on Systems, Signals and Devices. Presented at the 2008 5th International Multi-Conference on Systems, Signals and Devices, pp. 1–6. https://doi.org/10.1109/SSD.2008.4632891
Mahapatra, P.S., Puppala, S.P., Adhikary, B., Shrestha, K.L., Dawadi, D.P., Paudel, S.P., Panday, A.K., 2019. Air quality trends of the Kathmandu Valley: A satellite, observation and modeling perspective. Atmospheric Environment 201, 334–347. https://doi.org/10.1016/j.atmosenv.2018.12.043
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., 2020. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health 8. https://doi.org/10.3389/fpubh.2020.00014
Mansouri Daneshvar, M.R., Ebrahimi, M., Sadeghi, A., Mahmoudzadeh, A., 2021. Climate effects on the COVID-19 outbreak: a comparative analysis between the UAE and Switzerland. Model. Earth Syst. Environ. https://doi.org/10.1007/s40808-021-01110-x
Matthew, O.J., Eludoyin, A.O., Oluwadiya, K.S., 2021. Spatio-temporal variations in COVID-19 in relation to the global climate distribution and fluctuations. Spatial and Spatio-temporal Epidemiology 37, 100417. https://doi.org/10.1016/j.sste.2021.100417
Mecenas, P., Bastos, R.T. da R.M., Vallinoto, A.C.R., Normando, D., 2020. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLOS ONE 15, e0238339. https://doi.org/10.1371/journal.pone.0238339
Mehmood, K., Bao, Y., Abrar, M.M., Petropoulos, G.P., Saifullah, Soban, A., Saud, S., Khan, Z.A., Khan, S.M., Fahad, S., 2021. Spatiotemporal variability of COVID-19 pandemic in relation to air pollution, climate and socioeconomic factors in Pakistan. Chemosphere 271, 129584. https://doi.org/10.1016/j.chemosphere.2021.129584
Mehta, S., Shin, H., Burnett, R., North, T., Cohen, A.J., 2013. Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease. Air Qual Atmos Health 6, 69–83. https://doi.org/10.1007/s11869-011-0146-3
Mele, M., Magazzino, C., Schneider, N., Strezov, V., 2021. NO2 levels as a contributing factor to COVID-19 deaths: The first empirical estimate of threshold values. Environmental Research 194, 110663. https://doi.org/10.1016/j.envres.2020.110663
Menebo, M.M., 2020. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Science of The Total Environment 737, 139659. https://doi.org/10.1016/j.scitotenv.2020.139659
Mollalo, A., Vahedi, B., Rivera, K.M., 2020. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Science of The Total Environment 728, 138884. https://doi.org/10.1016/j.scitotenv.2020.138884
Moniruzzam, M., Roy, A., Bhatt, C.M., Gupta, A., An, N.T.T., Hassan, M.R., 2018. Impact Analysis of Urbanization on Land Use Land Cover Change for Khulna City, Bangladesh using Temporal Landsat Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII–5, 757–760. https://doi.org/10.5194/isprs-archives-XLII-5-757-2018
Moore, M., Little, P., 2007. Humidified air inhalation for treating croup: a systematic review and meta-analysis. Family Practice 24, 295–301. https://doi.org/10.1093/fampra/cmm022
Moriyama, M., Ichinohe, T., 2019. High ambient temperature dampens adaptive immune responses to influenza A virus infection. PNAS 116, 3118–3125. https://doi.org/10.1073/pnas.1815029116
Munawer, M.E., 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining 17, 87–96. https://doi.org/10.1016/j.jsm.2017.12.007
Nanda, C., Kant, Y., Gupta, A., Mitra, D., 2018. Spatio-Temporal Distribution of Pollutant Trace Gases During Diwali Over India. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV–5, 339–350. https://doi.org/10.5194/isprs-annals-IV-5-339-2018
Naqvi, H.R., Datta, M., Mutreja, G., Siddiqui, M.A., Naqvi, D.F., Naqvi, A.R., 2021. Improved air quality and associated mortalities in India under COVID-19 lockdown. Environ Pollut 268, 115691. https://doi.org/10.1016/j.envpol.2020.115691
Nicholson, L.B., 2016. The immune system. Essays Biochem 60, 275–301. https://doi.org/10.1042/EBC20160017
Nigam, R., Pandya, K., Luis, A.J., Sengupta, R., Kotha, M., 2021. Positive effects of COVID-19 lockdown on air quality of industrial cities (Ankleshwar and Vapi) of Western India. Sci Rep 11, 4285. https://doi.org/10.1038/s41598-021-83393-9
Nottmeyer, L.N., Sera, F., 2021. Influence of temperature, and of relative and absolute humidity on COVID-19 incidence in England - A multi-city time-series study. Environ Res 196, 110977. https://doi.org/10.1016/j.envres.2021.110977
Nuvolone, D., Petri, D., Voller, F., 2018. The effects of ozone on human health. Environ Sci Pollut Res 25, 8074–8088. https://doi.org/10.1007/s11356-017-9239-3
Oliveiros, B., Caramelo, L., Ferreira, N.C., Caramelo, F., 2020. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. medRxiv 2020.03.05.20031872. https://doi.org/10.1101/2020.03.05.20031872
Orru, H., Ebi, K.L., Forsberg, B., 2017. The Interplay of Climate Change and Air Pollution on Health. Curr Envir Health Rpt 4, 504–513. https://doi.org/10.1007/s40572-017-0168-6
Pan, Y.-P., Zhu, X.-Y., Tian, S.-L., Wang, L.-L., Zhang, G.-Z., Zhou, Y.-B., Xu, P., Hu, B., Wang, Y.-S., 2017. Wet deposition and scavenging ratio of air pollutants during an extreme rainstorm in the North China Plain. Atmospheric and Oceanic Science Letters 10, 348–353. https://doi.org/10.1080/16742834.2017.1343084
Pandey, S.K., Vinoj, V., Landu, K., Babu, S.S., 2017. Declining pre-monsoon dust loading over South Asia: Signature of a changing regional climate. Sci Rep 7, 16062. https://doi.org/10.1038/s41598-017-16338-w
Pani, S.K., Lin, N.-H., RavindraBabu, S., 2020. Association of COVID-19 pandemic with meteorological parameters over Singapore. Science of The Total Environment 740, 140112. https://doi.org/10.1016/j.scitotenv.2020.140112
Panofsky, H.A., Prasad, B., 1967. The Effect of Meteorological Factors on Air Pollution in a Narrow Valley. Journal of Applied Meteorology and Climatology 6, 493–499. https://doi.org/10.1175/1520-0450(1967)006<0493:TEOMFO>2.0.CO;2
Pansini, R., Fornacca, D., 2020. COVID-19 higher induced mortality in Chinese regions with lower air quality. medRxiv 2020.04.04.20053595. https://doi.org/10.1101/2020.04.04.20053595
Paulin, L., Hansel, N., 2016. Particulate air pollution and impaired lung function. F1000Res 5, 201. https://doi.org/10.12688/f1000research.7108.1
Paunescu, A.-C., Casas, M., Ferrero, A., Pañella, P., Bougas, N., Beydon, N., Just, J., Lezmi, G., Sunyer, J., Ballester, F., Momas, I., 2019. Associations of black carbon with lung function and airway inflammation in schoolchildren. Environment International 131, 104984. https://doi.org/10.1016/j.envint.2019.104984
Perlman, S., 2020. Another Decade, Another Coronavirus. New England Journal of Medicine 382, 760–762. https://doi.org/10.1056/NEJMe2001126
Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A., 2001. Increased Particulate Air Pollution and the Triggering of Myocardial Infarction. Circulation 103, 2810–2815. https://doi.org/10.1161/01.CIR.103.23.2810
Pica, N., Bouvier, N.M., 2012. Environmental factors affecting the transmission of respiratory viruses. Curr Opin Virol 2, 90–95. https://doi.org/10.1016/j.coviro.2011.12.003
Power, G.G., 1968. Solubility of O2 and CO in blood and pulmonary and placental tissue. Journal of Applied Physiology 24, 468–474. https://doi.org/10.1152/jappl.1968.24.4.468
Prabhu, V., Soni, A., Madhwal, S., Gupta, A., Sundriyal, S., Shridhar, V., Sreekanth, V., Mahapatra, P.S., 2020. Black carbon and biomass burning associated high pollution episodes observed at Doon valley in the foothills of the Himalayas. Atmospheric Research 243, 105001. https://doi.org/10.1016/j.atmosres.2020.105001
Price, R.H.M., Graham, C., Ramalingam, S., 2019. Association between viral seasonality and meteorological factors. Scientific Reports 9, 929. https://doi.org/10.1038/s41598-018-37481-y
Qi, H., Xiao, S., Shi, R., Ward, M.P., Chen, Y., Tu, W., Su, Q., Wang, W., Wang, X., Zhang, Z., 2020. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Science of The Total Environment 728, 138778. https://doi.org/10.1016/j.scitotenv.2020.138778
Qin, Y.-G., Yi, C., Dong, G.-L., Min, J.-Z., 2020. Investigating the influence of meteorological factors on particulate matters: A case study based on path analysis. Energy & Environment 31, 479–491. https://doi.org/10.1177/0958305X19876696
Rendana, M., 2020. Impact of the wind conditions on COVID-19 pandemic: A new insight for direction of the spread of the virus. Urban Clim 34, 100680. https://doi.org/10.1016/j.uclim.2020.100680
Roldán-Henao, N., Hoyos, C.D., Herrera-Mejía, L., Isaza, A., 2020. An Investigation of the Precipitation Net Effect on the Particulate Matter Concentration in a Narrow Valley: Role of Lower-Troposphere Stability. Journal of Applied Meteorology and Climatology 59, 401–426. https://doi.org/10.1175/JAMC-D-18-0313.1
Rosario, D.K.A., Mutz, Y.S., Bernardes, P.C., Conte-Junior, C.A., 2020. Relationship between COVID-19 and weather: Case study in a tropical country. International Journal of Hygiene and Environmental Health 229, 113587. https://doi.org/10.1016/j.ijheh.2020.113587
Rosenthal, F.S., Kuisma, M., Lanki, T., Hussein, T., Boyd, J., Halonen, J.I., Pekkanen, J., 2013. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: Evidence for two different etiologies. Journal of Exposure Science & Environmental Epidemiology 23, 281–288. https://doi.org/10.1038/jes.2012.121
Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y.-A., Mushore, T.D., Gupta, A., 2020. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sensing 12, 2433. https://doi.org/10.3390/rs12152433
Rume, T., Islam, S.M.D.-U., 2020. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e04965
Runkle, J.D., Sugg, M.M., Leeper, R.D., Rao, Y., Matthews, J.L., Rennie, J.J., 2020. Short-term effects of specific humidity and temperature on COVID-19 morbidity in select US cities. Sci Total Environ 740, 140093. https://doi.org/10.1016/j.scitotenv.2020.140093
Saadat, S., Rawtani, D., Hussain, C.M., 2020. Environmental perspective of COVID-19. Science of The Total Environment 728, 138870. https://doi.org/10.1016/j.scitotenv.2020.138870
Şahin, M., 2020. Impact of weather on COVID-19 pandemic in Turkey. Science of The Total Environment 728, 138810. https://doi.org/10.1016/j.scitotenv.2020.138810
Saikawa, E., Panday, A., Kang, S., Gautam, R., Zusman, E., Cong, Z., Somanathan, E., Adhikary, B., 2019. Air Pollution in the Hindu Kush Himalaya, in: Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B. (Eds.), The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People. Springer International Publishing, Cham, pp. 339–387. https://doi.org/10.1007/978-3-319-92288-1_10
Sajadi, M.M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F., Amoroso, A., 2020. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw Open 3, e2011834. https://doi.org/10.1001/jamanetworkopen.2020.11834
Saliba, N.A., El Jam, F., El Tayar, G., Obeid, W., Roumie, M., 2010. Origin and variability of particulate matter (PM10 and PM2.5) mass concentrations over an Eastern Mediterranean city. Atmospheric Research 97, 106–114. https://doi.org/10.1016/j.atmosres.2010.03.011
Sangkham, S., Thongtip, S., Vongruang, P., 2021. Influence of air pollution and meteorological factors on the spread of COVID-19 in the Bangkok Metropolitan Region and air quality during the outbreak. Environ Res 197, 111104. https://doi.org/10.1016/j.envres.2021.111104
Sario, M.D., Katsouyanni, K., Michelozzi, P., 2013. Climate change, extreme weather events, air pollution and respiratory health in Europe. European Respiratory Journal 42, 826–843. https://doi.org/10.1183/09031936.00074712
Sarkodie, S.A., Owusu, P.A., 2020. Impact of meteorological factors on COVID-19 pandemic: Evidence from top 20 countries with confirmed cases. Environmental Research 191, 110101. https://doi.org/10.1016/j.envres.2020.110101
Sathian, B., Asim, M., Banerjee, I., Pizarro, A.B., Roy, B., van Teijlingen, E.R., do Nascimento, I.J.B., Alhamad, H.K., 2020. Impact of COVID-19 on clinical trials and clinical research: A systematic review. Nepal J Epidemiol 10, 878–887. https://doi.org/10.3126/nje.v10i3.31622
Schmidt, C.W., 2011. Black Carbon: The Dark Horse of Climate Change Drivers. Environ Health Perspect 119, A172–A175.
Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., Matteis, S.D., Jung, S.-H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2019. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. CHEST 155, 409–416. https://doi.org/10.1016/j.chest.2018.10.042
Segersson, D., Eneroth, K., Gidhagen, L., Johansson, C., Omstedt, G., Engström Nylén, A., Forsberg, B., 2017. Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14070742
Selcuk, M., Gormus, S., Guven, M., 2021. Impact of Weather Parameters and Population Density on the COVID-19 Transmission: Evidence from 81 Provinces of Turkey. Earth Syst Environ 5, 87–100. https://doi.org/10.1007/s41748-020-00197-z
Seo, J., Park, D.-S.R., Kim, J.Y., Youn, D., Lim, Y.B., Kim, Y., 2018. Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea. Atmos. Chem. Phys. 18, 16121–16137. https://doi.org/10.5194/acp-18-16121-2018
Shahri, M.K., Niazkar, H.R., Rad, F., 2021. COVID-19 and hematology findings based on the current evidences: A puzzle with many missing pieces. International Journal of Laboratory Hematology 43, 160–168. https://doi.org/10.1111/ijlh.13412
Shakil, M.H., Munim, Z.H., Tasnia, M., Sarowar, S., 2020. COVID-19 and the environment: A critical review and research agenda. Science of The Total Environment 745, 141022. https://doi.org/10.1016/j.scitotenv.2020.141022
Sharma, G.D., Bansal, S., Yadav, A., Jain, M., Garg, I., 2021. Meteorological factors, COVID-19 cases, and deaths in top 10 most affected countries: an econometric investigation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12668-5
Shi, P., Dong, Y., Yan, H., Zhao, C., Li, X., Liu, W., He, M., Tang, S., Xi, S., 2020. Impact of temperature on the dynamics of the COVID-19 outbreak in China. Science of The Total Environment 728, 138890. https://doi.org/10.1016/j.scitotenv.2020.138890
Shukla, J.B., Misra, A.K., Sundar, S., Naresh, R., 2008. Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Mathematical and Computer Modelling 48, 832–844. https://doi.org/10.1016/j.mcm.2007.10.016
Sil, A., Kumar, V.N., 2020. Does weather affect the growth rate of COVID-19, a study to comprehend transmission dynamics on human health. Journal of Safety Science and Resilience 1, 3–11. https://doi.org/10.1016/j.jnlssr.2020.06.004
Singh, R.P., Chauhan, A., 2020. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual Atmos Health 1–8. https://doi.org/10.1007/s11869-020-00863-1
Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing 14, 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Song, S., Zhan, Z., Long, Z., Zhang, J., Yao, L., 2011. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data. PLoS One 6, e17191. https://doi.org/10.1371/journal.pone.0017191
Spekreijse, D., Bouma, A., Koch, G., Stegeman, A., 2013. Quantification of dust‐borne transmission of highly pathogenic avian influenza virus between chickens. Influenza Other Respir Viruses 7, 132–138. https://doi.org/10.1111/j.1750-2659.2012.00362.x
Steffens, I., 2020. A hundred days into the coronavirus disease (COVID-19) pandemic. Eurosurveillance 25, 2000550. https://doi.org/10.2807/1560-7917.ES.2020.25.14.2000550
Suhaimi, N.F., Jalaludin, J., 2015. Biomarker as a research tool in linking exposure to air particles and respiratory health. Biomed Res Int 2015, 962853. https://doi.org/10.1155/2015/962853
Suhaimi, N.F., Jalaludin, J., Latif, M.T., 2020. Demystifying a Possible Relationship between COVID-19, Air Quality and Meteorological Factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 20, 1520–1529. https://doi.org/10.4209/aaqr.2020.05.0218
Sun, Z., Thilakavathy, K., Kumar, S.S., He, G., Liu, S.V., 2020. Potential Factors Influencing Repeated SARS Outbreaks in China. International Journal of Environmental Research and Public Health 17, 1633. https://doi.org/10.3390/ijerph17051633
Suryadhi, M.A.H., Abudureyimu, K., Kashima, S., Yorifuji, T., 2020. Nitrogen dioxide and acute respiratory tract infections in children in Indonesia. Arch Environ Occup Health 75, 274–280. https://doi.org/10.1080/19338244.2019.1631245
Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., Yin, J., 2005. An initial investigation of the association between the SARS outbreak and weather: with the view of the environmental temperature and its variation. J Epidemiol Community Health 59, 186–192. https://doi.org/10.1136/jech.2004.020180
Tang, S., Mao, Y., Jones, R.M., Tan, Q., Ji, J.S., Li, N., Shen, J., Lv, Y., Pan, L., Ding, P., Wang, X., Wang, Y., MacIntyre, C.R., Shi, X., 2020. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environment International 144, 106039. https://doi.org/10.1016/j.envint.2020.106039
Tellier, R., 2006. Review of aerosol transmission of influenza A virus. Emerg Infect Dis 12, 1657–1662. https://doi.org/10.3201/eid1211.060426
Thompson, A.M., 1992. The Oxidizing Capacity of the Earth’s Atmosphere: Probable Past and Future Changes. Science 256, 1157–1165. https://doi.org/10.1126/science.256.5060.1157
Thurston, G.D., Kipen, H., Annesi-Maesano, I., Balmes, J., Brook, R.D., Cromar, K., De Matteis, S., Forastiere, F., Forsberg, B., Frampton, M.W., Grigg, J., Heederik, D., Kelly, F.J., Kuenzli, N., Laumbach, R., Peters, A., Rajagopalan, S.T., Rich, D., Ritz, B., Samet, J.M., Sandstrom, T., Sigsgaard, T., Sunyer, J., Brunekreef, B., 2017. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 49. https://doi.org/10.1183/13993003.00419-2016
Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012. Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models [WWW Document]. Mathematical Problems in Engineering. https://doi.org/10.1155/2012/974638
Tobias, A., Karanasiou, A., Reche, C., Amato, F., Alastuey, A., Querol, X., 2014. Effects of black carbon on respiratory health in the city of Barcelona. European Respiratory Journal 44.
Tosepu, R., Gunawan, J., Effendy, D.S., Ahmad, L.O.A.I., Lestari, H., Bahar, H., Asfian, P., 2020. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of The Total Environment 725, 138436. https://doi.org/10.1016/j.scitotenv.2020.138436
Turner, M.C., Jerrett, M., Pope, C.A., Krewski, D., Gapstur, S.M., Diver, W.R., Beckerman, B.S., Marshall, J.D., Su, J., Crouse, D.L., Burnett, R.T., 2015. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am J Respir Crit Care Med 193, 1134–1142. https://doi.org/10.1164/rccm.201508-1633OC
Tuttle, K.R., 2020. Impact of the COVID-19 pandemic on clinical research. Nature Reviews Nephrology 16, 562–564. https://doi.org/10.1038/s41581-020-00336-9
Urman, R., McConnell, R., Islam, T., Avol, E.L., Lurmann, F.W., Vora, H., Linn, W.S., Rappaport, E.B., Gilliland, F.D., Gauderman, W.J., 2014. Associations of children’s lung function with ambient air pollution: joint effects of regional and near-roadway pollutants. Thorax 69, 540–547. https://doi.org/10.1136/thoraxjnl-2012-203159
VALAVANIDIS, A., FIOTAKIS, K., VLACHOGIANNI, T., 2008. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. Journal of Environmental Science and Health, Part C 26, 339–362. https://doi.org/10.1080/10590500802494538
Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 39, 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Vapnik, V., Golowich, S.E., Smola, A.J., 1997. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing 7.
Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4757-2440-0
Vautard, R., Builtjes, P.H.J., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., Honoré, C., Moussiopoulos, N., Pirovano, G., Schaap, M., 2007. Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmospheric Environment 41, 173–188. https://doi.org/10.1016/j.atmosenv.2006.07.039
Venter, Z.S., Aunan, K., Chowdhury, S., Lelieveld, J., 2020. COVID-19 lockdowns cause global air pollution declines. PNAS 117, 18984–18990. https://doi.org/10.1073/pnas.2006853117
Wang, C., Horby, P.W., Hayden, F.G., Gao, G.F., 2020a. A novel coronavirus outbreak of global health concern. The Lancet 395, 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
Wang, J., Ogawa, S., 2015. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int J Environ Res Public Health 12, 9089–9101. https://doi.org/10.3390/ijerph120809089
Wang, J., Yu, A., Yang, L., Fang, C., 2019. Research on Organic Carbon and Elemental Carbon Distribution Characteristics and Their Influence on Fine Particulate Matter (PM2.5) in Changchun City. Environments 6, 21. https://doi.org/10.3390/environments6020021
Wang, M., Jiang, A., Gong, L., Luo, L., Guo, W., Li, Chuyi, Zheng, J., Li, Chaoyong, Yang, B., Zeng, J., Chen, Y., Zheng, K., Li, H., 2020b. Temperature significant change COVID-19 Transmission in 429 cities. medRxiv 2020.02.22.20025791. https://doi.org/10.1101/2020.02.22.20025791
Wang, Q., Su, M., 2020. A preliminary assessment of the impact of COVID-19 on environment – A case study of China. Science of The Total Environment 728, 138915. https://doi.org/10.1016/j.scitotenv.2020.138915
Wang, Y., Wang, Yuyi, Chen, Y., Qin, Q., 2020c. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of Medical Virology 92, 568–576. https://doi.org/10.1002/jmv.25748
White, M.P., Alcock, I., Grellier, J., Wheeler, B.W., Hartig, T., Warber, S.L., Bone, A., Depledge, M.H., Fleming, L.E., 2019. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports 9, 7730. https://doi.org/10.1038/s41598-019-44097-3
Winiger, P., Andersson, A., Eckhardt, S., Stohl, A., Gustafsson, Ö., 2016. The sources of atmospheric black carbon at a European gateway to the Arctic. Nature Communications 7, 12776. https://doi.org/10.1038/ncomms12776
Wu, J.-Z., Ge, D.-D., Zhou, L.-F., Hou, L.-Y., Zhou, Y., Li, Q.-Y., 2018a. Effects of particulate matter on allergic respiratory diseases. Chronic Diseases and Translational Medicine, Special Issue: Air Pollution and Chronic Respiratory Diseases 4, 95–102. https://doi.org/10.1016/j.cdtm.2018.04.001
Wu, X., Nethery, R.C., Sabath, M.B., Braun, D., Dominici, F., 2020. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science Advances 6, eabd4049. https://doi.org/10.1126/sciadv.abd4049
Wu, Y., Liu, J., Zhai, J., Cong, L., Wang, Y., Ma, W., Zhang, Z., Li, C., 2018b. Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLOS ONE 13, e0199241. https://doi.org/10.1371/journal.pone.0199241
Wu, Z., McGoogan, J.M., 2020. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239. https://doi.org/10.1001/jama.2020.2648
Xie, J., Zhu, Y., 2020. Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of The Total Environment 724, 138201. https://doi.org/10.1016/j.scitotenv.2020.138201
Xing, Y.-F., Xu, Y.-H., Shi, M.-H., Lian, Y.-X., 2016. The impact of PM2.5 on the human respiratory system. J Thorac Dis 8, E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
Xu, H., Guinot, B., Ho, S.S.H., Li, Y., Cao, J., Shen, Z., Niu, X., Zhao, Z., Liu, S., Lei, Y., Zhang, Q., Sun, J., 2018a. Evaluation on exposures to particulate matter at a junior secondary school: a comprehensive study on health risks and effective inflammatory responses in Northwestern China. Environ Geochem Health 40, 849–863. https://doi.org/10.1007/s10653-017-0030-7
Xu, X., Liu, X., Ma, S., Xu, Ya, Xu, Ying, Guo, X., Li, D., 2018b. Association of Melatonin Production with Seasonal Changes, Low Temperature, and Immuno-Responses in Hamsters. Molecules 23. https://doi.org/10.3390/molecules23030703
Yang, G., Liu, Y., Li, X., 2020a. Spatiotemporal distribution of ground-level ozone in China at a city level. Scientific Reports 10, 7229. https://doi.org/10.1038/s41598-020-64111-3
Yang, X., Yang, Q., Wang, Y., Wu, Y., Xu, J., Yu, Y., Shang, Y., 2020b. Thrombocytopenia and its association with mortality in patients with COVID-19. Journal of Thrombosis and Haemostasis 18, 1469–1472. https://doi.org/10.1111/jth.14848
Yekkehkhany, B., Safari, A., Homayouni, S., Hasanlou, M., 2014. A Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry Sar Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-2/W3, 281–285. https://doi.org/10.5194/isprsarchives-XL-2-W3-281-2014
Yuan, J., Wu, Y., Jing, W., Liu, J., Du, M., Wang, Y., Liu, M., 2021. Non-linear correlation between daily new cases of COVID-19 and meteorological factors in 127 countries. Environ Res 193, 110521. https://doi.org/10.1016/j.envres.2020.110521
Zhang, D., Li, Y., Chen, Q., Jiang, Y., Chu, C., Ding, Y., Yu, Y., Fan, Y., Shi, J., Luo, Y., Zhou, W., 2019b. The relationship between air quality and respiratory pathogens among children in Suzhou City. Italian Journal of Pediatrics 45, 123. https://doi.org/10.1186/s13052-019-0702-2
Zhang, H., Wang, Y., Hu, J., Ying, Q., Hu, X.-M., 2015. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environmental Research 140, 242–254. https://doi.org/10.1016/j.envres.2015.04.004
Zhang, H., Wang, Z., 2011. Advances in the Study of Black Carbon Effects on Climate. Advances in Climate Change Research 2, 23–30. https://doi.org/10.3724/SP.J.1248.2011.00023
Zhang, J., Chen, Q., Wang, Q., Ding, Z., Sun, H., Xu, Y., 2019c. The acute health effects of ozone and PM2.5 on daily cardiovascular disease mortality: A multi-center time series study in China. Ecotoxicology and Environmental Safety 174, 218–223. https://doi.org/10.1016/j.ecoenv.2019.02.085
Zhang, J. (Jim), Wei, Y., Fang, Z., 2019a. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 10. https://doi.org/10.3389/fimmu.2019.02518
Zhang, L., Michelangeli, D.V., Taylor, P.A., 2004. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmospheric Environment 38, 4653–4665. https://doi.org/10.1016/j.atmosenv.2004.05.042
Zhang, Z., Xu, X., Qiao, L., Gong, D., Kim, S.-J., Wang, Y., Mao, R., 2018. Numerical simulations of the effects of regional topography on haze pollution in Beijing. Sci Rep 8, 5504. https://doi.org/10.1038/s41598-018-23880-8
Zhao, Y., Richardson, B., Takle, E., Chai, L., Schmitt, D., Xin, H., 2019. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Scientific Reports 9, 11755. https://doi.org/10.1038/s41598-019-47788-z
Zheng, Z., Xu, G., Li, Q., Chen, C., Li, J., 2019. Effect of precipitation on reducing atmospheric pollutant over Beijing. Atmospheric Pollution Research 10, 1443–1453. https://doi.org/10.1016/j.apr.2019.04.001
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., 2020a. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382, 727–733. https://doi.org/10.1056/NEJMoa2001017
Zhu, Y., Xie, J., Huang, F., Cao, L., 2020b. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci Total Environ 727, 138704. https://doi.org/10.1016/j.scitotenv.2020.138704
Zoran, M.A., Savastru, R.S., Savastru, D.M., Tautan, M.N., 2020. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Science of The Total Environment 740, 140005. https://doi.org/10.1016/j.scitotenv.2020.140005
Zu, Z.Y., Jiang, M.D., Xu, P.P., Chen, W., Ni, Q.Q., Lu, G.M., Zhang, L.J., 2020. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 200490. https://doi.org/10.1148/radiol.2020200490
Asyary, A., Veruswati, M., 2020. Sunlight exposure increased Covid-19 recovery rates: A study in the central pandemic area of Indonesia. Sci. Total Environ. 729, 139016. https://doi.org/10.1016/j.scitotenv.2020.139016
Auler, A.C., Cássaro, F.A.M., da Silva, V.O., Pires, L.F., 2020. Evidence that high temperatures and intermediate relative humidity might favor the spread of COVID-19 in tropical climate: A case study for the most affected Brazilian cities. Sci. Total Environ. 729, 139090. https://doi.org/10.1016/j.scitotenv.2020.139090
Awasthi, A., Sharma, A., Kaur, P., Gugamsetty, B., Kumar, A., 2021. Statistical interpretation of environmental influencing parameters on COVID-19 during the lockdown in Delhi, India. Environ. Dev. Sustain. 23, 8147–8160. https://doi.org/10.1007/s10668-020-01000-9
Barcelo, D., 2020. An environmental and health perspective for COVID-19 outbreak: Meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J. Environ. Chem. Eng. 8, 104006. https://doi.org/10.1016/j.jece.2020.104006
Bertuzzo, E., Mari, L., Pasetto, D., Miccoli, S., Casagrandi, R., Gatto, M., Rinaldo, A., 2020. The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures. Nat. Commun. 11, 1–11. https://doi.org/10.1038/s41467-020-18050-2
Bhattacharjee, A., Kumar, M., Patel, K.K., 2021. When COVID-19 will decline in India? Prediction by combination of recovery and case load rate. Clin. Epidemiol. Glob. Heal. 9, 17–20. https://doi.org/10.1016/j.cegh.2020.06.004
Ceylan, Z., 2021. Insights into the relationship between weather parameters and COVID-19 outbreak in Lombardy, Italy. Int. J. Healthc. Manag. 14, 255–263. https://doi.org/10.1080/20479700.2020.1858394
Chen, Y., Li, Q., Karimian, H., Chen, X., Li, X., 2021. Spatio-temporal distribution characteristics and influencing factors of COVID-19 in China. Sci. Rep. 11, 1–12. https://doi.org/10.1038/s41598-021-83166-4
Doğan, B., Ben Jebli, M., Shahzad, K., Farooq, T.H., Shahzad, U., 2020. Investigating the Effects of Meteorological Parameters on COVID-19: Case Study of New Jersey, United States. Environ. Res. 191, 110148. https://doi.org/10.1016/j.envres.2020.110148
Domingo, J.L., Rovira, J., 2020. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 187, 109650. https://doi.org/10.1016/j.envres.2020.109650
Fu, S., Wang, B., Zhou, J., Xu, X., Liu, J., Ma, Y., Li, L., He, X., Li, S., Niu, J., Luo, B., Zhang, K., 2021. Meteorological factors, governmental responses and COVID-19: Evidence from four European countries. Environ. Res. 194, 110596. https://doi.org/10.1016/j.envres.2020.110596
Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D., Sidorov, I.A., Sola, I., Ziebuhr, J., 2020. Severe acute respiratory syndrome-related coronavirus: The species and its viruses – a statement of the Coronavirus Study Group. bioRxiv. https://doi.org/10.1101/2020.02.07.937862
Hridoy, A.E.E., Mohiman, M.A., Tusher, S.M.S.H., Nowraj, S.Z.A., Rahman, M.A., 2021. Impact of meteorological parameters on COVID-19 transmission in Bangladesh: a spatiotemporal approach. Theor. Appl. Climatol. 144, 273–285. https://doi.org/10.1007/s00704-021-03535-x
Islam, A.R.M.T., Hasanuzzaman, M., Azad, M.A.K., Salam, R., Toshi, F.Z., Khan, M.S.I., Alam, G.M.M., Ibrahim, S.M., 2021. Effect of meteorological factors on COVID-19 cases in Bangladesh. Environ. Dev. Sustain. 23, 9139–9162. https://doi.org/10.1007/s10668-020-01016-1
Jain, M., Sharma, G.D., Goyal, M., Kaushal, R., Sethi, M., 2021. Econometric analysis of COVID-19 cases, deaths, and meteorological factors in South Asia. Environ. Sci. Pollut. Res. 28, 28518–28534. https://doi.org/10.1007/s11356-021-12613-6
Kaplin, A., Junker, C., Kumar, A., Ribeiro, M.A., Yu, E., Wang, M., Smith, T., Rai, S.N., Bhatnagar, A., 2021. Evidence and magnitude of the effects of meteorological changes on SARS-CoV-2 transmission. PLoS One 16, 1–16. https://doi.org/10.1371/journal.pone.0246167
Karapiperis, C., Kouklis, P., Papastratos, S., Chasapi, A., Ouzounis, C., 2020. Assessment for the seasonality of Covid-19 should focus on ultraviolet radiation and not ‘warmer days’ 19–20. https://doi.org/10.31219/osf.io/397yg
Kumar, S., 2020. Effect of meteorological parameters on spread of COVID-19 in India and air quality during lockdown. Sci. Total Environ. 745, 141021. https://doi.org/10.1016/j.scitotenv.2020.141021
Leung, K., Wu, J.T., Liu, D., Leung, G.M., 2020. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet 395, 1382–1393. https://doi.org/10.1016/S0140-6736(20)30746-7
Li, H., Xu, X.L., Dai, D.W., Huang, Z.Y., Ma, Z., Guan, Y.J., 2020. Air pollution and temperature are associated with increased COVID-19 incidence: A time series study. Int. J. Infect. Dis. 97, 278–282. https://doi.org/10.1016/j.ijid.2020.05.076
Lin, S., Wei, D., Sun, Y., Chen, K., Yang, L., Liu, B., Huang, Q., Bastos Paoliello, M.M., Li, H., Wu, S., 2020. Region-specific air pollutants and meteorological parameters influence COVID-19: A study from mainland China. Ecotoxicol. Environ. Saf. 204, 111035. https://doi.org/10.1016/j.ecoenv.2020.111035
Liu, T., Hu, J., Xiao, J., He, G., Kang, M., Rong, Z., Lin, L., Zhong, H., Huang, Q., Deng, A., Zeng, W., Tan, X., Zeng, S., Zhu, Z., Li, J., Gong, D., Wan, D., Chen, S., Guo, L., Li, Y., Sun, L., Liang, W., Song, T., He, J., Ma, W., 2020. Time-varying transmission dynamics of Novel Coronavirus Pneumonia in China. bioRxiv. https://doi.org/10.1101/2020.01.25.919787
Luo, W., Majumder, M., Liu, D., Poirier, C., Mandl, K., Lipsitch, M., Santillana, M., 2020. The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv 1–7. https://doi.org/10.1101/2020.02.12.20022467
Oliveiros;, B., Caramelo;, L., Ferreira;, N.C., F Caramelo, 2020. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases B. medRxiv 1–13. https://doi.org/https://doi.org/10.1101/2020.03.05.20031872
Sahafizadeh, E., Sartoli, S., 2020. High temperature has no impact on the reproduction number and new cases of COVID-19 in Bushehr, Iran. J. Travel Med. https://doi.org/10.1101/2020.06.14.20130906
Saraç, S., Koyuncu, M., 2020. The Effect of Weather Conditions and Some Demographic Data on the Confirmed COVID-19 Cases : Analysis for 12 Statistical Regions of Turkey Vakalar ı Üzerine Etkisi : Türkiye ’ nin 12 İ statistik Bölgesi Analizi 35, 883–890.
Singh, K., Agarwal, A., 2020. Impact of weather indicators on the COVID-19 outbreak: A multi-state study in India. medRxiv 1–12. https://doi.org/10.1101/2020.06.14.20130666
Wang, M., Jiang, A., Gong, L., Lu, L., Guo, W., Li, Chuyi, Zheng, J., Li, Chaoyong, Yang, B., Zeng, J., Chen, Y., Zheng, K., Hongyan Li, 2020. Temperature Significantly Change COVID-19 Transmission in 429 cities. medRxiv 1–13. https://doi.org/https://doi.org/10.1101/2020.02.22.20025791