1. Nielsen, S. S. & Toft, N. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev. Vet. Med. 88, 1–14 https://doi.org/10.1016/j.prevetmed.2008.07.003 (2009)
2. Ott, S. L., Wells, S. J. & Wagner, B. A. Herd-level economic losses associated with Johne’s disease on US dairy operations. Prev. Vet. Med. 40, 179–192 https://doi.org/10.1016/S0167-5877(99)00037-9 (1999)
3. Hasonova, L. & Pavlik, I. Economic impact of paratuberculosis in dairy cattle herds: A review. Vet. Med. (Praha). 51, 193–211 https://doi.org/10.17221/5539-VETMED (2006)
4. Sweeney, R. W. Pathogenesis of paratuberculosis. Vet. Clin. North Am. - Food Anim. Pract. 27, 537–546 https://doi.org/10.1016/j.cvfa.2011.07.001 (2011)
5. Bastida, F. & Juste, R. A. Paratuberculosis control: A review with a focus on vaccination. J. Immune Based Ther. Vaccines9, 8 10.1186/1476-8518-9-8 (2011)
6. Feller, M. et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect. Dis. 7, 607–613 https://doi.org/10.1016/S1473-3099(07)70211-6 (2007)
7. Niegowska, M. et al. Type 1 Diabetes at-risk children highly recognize Mycobacterium avium subspecies paratuberculosis epitopes homologous to human Znt8 and Proinsulin. Sci. Rep.6, 2–11 https://doi.org/10.1038/srep22266 (2016)
8. Yokoyama, K. et al. Anti-mycobacterial antibodies in paired cerebrospinal fluid and serum samples from japanese patients with multiple sclerosis or neuromyelitis optica spectrum disorder. J. Clin. Med. 7, 522 https://doi.org/10.3390/jcm7120522 (2018)
9. Bo, M. et al. Interferon regulatory factor 5 is a potential target of autoimmune response triggered by Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis in rheumatoid arthritis: Investigating a mechanism of molecular mimicry. Clin. Exp. Rheumatol. 36, 0376–0381 (2018)
10. Cossu, D. et al. Association of Mycobacterium avium subsp. paratuberculosis with multiple sclerosis in sardinian patients. PLoS One6, 2–7 https://doi.org/10.1371/journal.pone.0018482 (2011)
11. Jeyanathan, M. et al. Visualization of Mycobacterium avium in Crohn’s tissue by oil-immersion microscopy. Microbes Infect. 9, 1567–1573 https://doi.org/10.1016/j.micinf.2007.09.001 (2007)
12. Pierce, E. S. Could Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease, ulcerative colitis⋯and colorectal cancer? Infect. Agent. Cancer13, 1–6 https://doi.org/10.1186/s13027-017-0172-3 (2018)
13. González, J. et al. Histopathological classification of lesions associated with natural paratuberculosis infection in cattle. J. Comp. Pathol. 133, 184–196 https://doi.org/10.1016/j.jcpa.2005.04.007 (2005)
14. Balseiro, A., Perez, V. & Juste, R. A. Chronic regional intestinal inflammatory disease: A trans-species slow infection? Comp. Immunol. Microbiol. Infect. Dis. 62, 88–100 https://doi.org/10.1016/j.cimid.2018.12.001 (2019)
15. Canive, M. et al. Identification of loci associated with susceptibility to Mycobacterium avium subsp. paratuberculosis infection in Holstein cattle using combinations of diagnostic tests and imputed whole-genome sequence data. PlosOne.Under review
16. McGovern, S. P. et al. Candidate genes associated with the heritable humoral response to Mycobacterium avium ssp. paratuberculosis in dairy cows have factors in common with gastrointestinal diseases in humans. J. Dairy Sci. 102, 4249–4263 https://doi.org/10.3168/jds.2018-15906 (2019)
17. Schulman, N. F. et al. Quantitative trait loci for health traits in Finnish Ayrshire cattle. J. Dairy Sci.87, 443–449 https://doi.org/10.3168/jds.S0022-0302(04)73183-5 (2004)
18. Richardson, I. W. et al. A genome-wide association study for genetic susceptibility to Mycobacterium bovis infection in dairy cattle identifies a susceptibility QTL on chromosome 23. Genet. Sel. Evol. 48, 1–13 https://doi.org/10.1186/s12711-016-0197-x (2016)
19. Leach, R. J., Craigmile, S. C., Knott, S. A., Williams, J. L. & Glass, E. J. Quantitative trait loci for variation in immune response to a Foot-and-Mouth Disease virus peptide. BMC Genet. 11, 1–14 https://doi.org/10.1186/1471-2156-11-107 (2010)
20. Gao, Y. et al. Genome-wide association study of Mycobacterium avium subspecies paratuberculosis infection in Chinese Holstein. BMC Genomics19, 1–10 https://doi.org/10.1186/s12864-018-5385-3 (2018)
21. Ring, S. C. et al. Variance components for bovine tuberculosis infection and multi-breed genome-wide association analysis using imputed whole genome sequence data. PLoS One14, 1–24 https://doi.org/10.1371/journal.pone.0212067 (2019)
22. Klungland, H. et al. Quantitative trait loci affecting clinical mastitis and somatic cell count in dairy cattle. Mamm. Genome12, 837–842 https://doi.org/10.1007/s00335001-2081-3 (2001)
23. Fang, L. et al. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle. Sci. Rep. 8, 1–14 https://doi.org/10.1038/s41598-018-27729-y (2018)
24. Juste, R. A. et al. Association between combinations of genetic polymorphisms and epidemiopathogenic forms of bovine paratuberculosis. Heliyonhttps://doi:10.1016/j.heliyon.2018.e00535 (2018)
25. Kumar, S. et al. Association of genetic variability in CD209 gene with bovine paratuberculosis disease: a case–control study in the Indian cattle population. Anim. Biotechnol. Sept 28, 1–8 https://doi.org/10.1080/10495398.2020.1823400 (2020)
26. Minozzi, G. et al. Genetic loci involved in antibody response to Mycobacterium avium ssp. paratuberculosis in cattle. PLoS One5,https://doi.org/10.1371/journal.pone.0011117 (2010)
27. Kiser, J. N. et al. Identification of loci associated with susceptibility to Mycobacterium avium subspecies paratuberculosis (Map) tissue infection in cattle. J. Anim. Sci. 95, 1080–1091 https://doi.org/10.2527/jas.2016.1152 (2017)
28. Koets, A. P. et al. Genetic variation of susceptibility to Mycobacterium avium subsp. paratuberculosis infection in dairy cattle. J. Dairy Sci. 83, 2702–2708 (https://doi.org/10.3168/jds.S0022-0302(00)75164-2 (2000)
29. Küpper, J., Brandt, H., Donat, K. & Erhardt, G. Phenotype definition is a main point in genome-wide association studies for bovine Mycobacterium avium ssp. paratuberculosis infection status. Animal8, 1586–1593 https://doi.org/10.1017/S1751731114001232 (2014)
30. Wilkinson, S. et al. Fine-mapping host genetic variation underlying outcomes to Mycobacterium bovis infection in dairy cows. BMC Genomics18, 1–13 https://doi.org/10.1186/s12864-017-3836-x (2017)
31. Alonso-Hearn, M. et al. RNA-Seq analysis of ileocecal valve and peripheral blood from Holstein cattle infected with Mycobacterium avium subsp. paratuberculosis revealed dysregulation of the CXCL8/IL8 signaling pathway. Sci. Rep. 9, 1–17 https://doi. 10.1038/s41598-019-51328-0 https://doi.org/10.1038/s41598-019-51328-0 (2019)
32. Blanco Vázquez, C. et al. Bovine intelectin 2 expression as a biomarker of paratuberculosis disease progression. Animals 11, 1–13 https://doi.org/10.3390/ani11051370 (2021)
33. Majumdar, D., Tiernan, J. P., Lobo, A. J., Evans, C. A. & Corfe, B. M. Keratins in colorectal epithelial function and disease. Int. J. Exp. Pathol. 93, 305–318 https://doi.org/10.1111/j.1365-2613.2012.00830.x (2012)
34. Singh, I. et al. Autoimmunity to tropomyosin-specific peptides induced by Mycobacterium leprae in leprosy patients: Identification of mimicking proteins. Front. Immunol.9, 1–10 https://doi.org/10.3389/fimmu.2018.00642 (2018)
35. Zang, S., He, Q., Bao, Q., Shen, Y. & Zhang, W. Establishment and validation of a novel survival prediction scoring algorithm for patients with non-small-cell lung cancer spinal metastasis. Int. J. Clin. Oncol. 24, 1049–1060 https://doi.org/10.1007/s10147-019-01452-8 (2019)
36. Manrique, W. G. et al. Expression of cellular components in granulomatous inflammatory response in piaractus mesopotamicus model. PLoS One10, 1–8 https://doi.org/10.1371/journal.pone.0121625 (2015)
37. Massone, C., Belachew, W. A. & Schettini, A. Histopathology of the lepromatous skin biopsy. Clin. Dermatol.33, 38–45 https://doi.org/10.1016/j.clindermatol.2014.10.003 (2015)
38. Leal-Calvo, T. et al. Large-Scale Gene Expression Signatures Reveal a Microbicidal Pattern of Activation in Mycobacterium leprae-Infected Monocyte-Derived Macrophages With Low Multiplicity of Infection. Front. Immunol.12, 1–12https://doi.org/10.3389/fimmu.2021.647832 (2021)
39. Dyer, N. H. & Dawson, A. M. The significance of serum cholesterol measurements in Crohn’s disease. Scand. J. Gastroenterol. 6, 253–256 https://doi.org/10.3109/00365527109180703 (1971)
40. Agouridis, A. P., Elisaf, M. & Milionis, H. J. An overview of lipid abnormalities in patients with inflammatory bowel disease. Ann. Gastroenterol. 24, 181–187 (2011)
41. Nakato, M. et al. ABCA13 dysfunction associated with psychiatric disorders causes impaired cholesterol trafficking. J. Biol. Chem. 296, 100166 https://doi.org/10.1074/jbc.RA120.015997 (2021)
42. Johansen, M. D., de Silva, K., Plain, K. M., Whittington, R. J. & Purdie, A. C. Mycobacterium avium subspecies paratuberculosis is able to manipulate host lipid metabolism and accumulate cholesterol within macrophages. Microb. Pathog. 130, 44–53 https://doi.org/10.1016/j.micpath.2019.02.031 (2019)
43. Ariel, O. et al. Transcriptome profiling of bovine macrophages infected by Mycobacterium avium spp. paratuberculosis depicts foam cell and innate immune tolerance phenotypes. Front. Immunol. 10, 1–27 https://doi.org/10.3389/fimmu.2019.02874 (2020)
44. Vázquez, P. et al. Genetic association analysis of paratuberculosis forms in Holstein-Friesian cattle. Vet. Med. Int.2014,https://doi.org/10.1371/journal.pone.0064568 (2014)
45. Loh, P. R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. Nat. Genet. 48, 811–816 https://doi.org/10.1038/ng.3571 (2016)
46. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 https://doi.org/10.1038/ng.3656 (2016)
47. Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu. Rev. Anim. Biosci. 7, 89–102 https://doi.org/10.1146/annurev-animal-020518-115024 (2019)
48. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 https://doi.org/10.1038/ng.823 (2011)
49. González, J. R. et al. SNPassoc: An R package to perform whole genome association studies. Bioinformatics23, 644–645 https://doi.org/10.1093/bioinformatics/btm025 (2007)
50. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/ Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 https://doi.org/10.1038/nprot.2009.97 (2009)
51. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. Omi. A J. Integr. Biol. 16, 284–287 https://doi.org/10.1089/omi.2011.0118 (2012)