It is important to study the oxidation characteristics of coal samples under different air supply rates to prevent spontaneous combustion of coal, particularly when the air supply rate at the working face needs to be changed during support withdrawal. In this work a self-designed temperature-programmed experimental device was used to study the change laws of various index gases released during the spontaneous combustion of coal under various air supply conditions. The study focused on the analysis of the low-temperature (30–200 ℃) oxidation stage, the increase in air supply, and the concentration change process of four hydrocarbon gases (C2H6, C3H8, C2H4, and C2H2) generated by the coal sample. The change law of the CO generation rate under the combined effect of temperature and air supply was analyzed, and surface fitting was performed to determine the characteristics of phased changes. Based on the working face parameters of the Yangchangwan Coal Mine, this study predicted the CO concentration at the upper corner of the working face at the characteristic temperature of coal spontaneous combustion during the withdrawal period. The paper summarizes comprehensive safety measures that can help prevent spontaneous combustion during the withdrawal period.