1 Baden, L. R. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New Engl J Med 384, 403-416, doi:10.1056/NEJMoa2035389 (2021).
2 Garcia-Beltran, W. F. et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, doi:10.1016/j.cell.2021.03.013 (2021).
3 Wang, Z. J. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, doi:10.1038/s41586-021-03324-6 (2021).
4 Wall, E. C. et al. Neutralising antibody activity against SARS-CoV-2 VOCs B. 1.617. 2 and B. 1.351 by BNT162b2 vaccination. The Lancet 397, 2331-2333 (2021).
5 Jiang, S. B., Hillyer, C. & Du, L. Y. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol 41, 355-359, doi:10.1016/j.it.2020.03.007 (2020).
6 Korber, B. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 182, 812-+, doi:10.1016/j.cell.2020.06.043 (2020).
7 Leung, K., Shum, M. H., Leung, G. M., Lam, T. T. & Wu, J. T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 26, 2002106 (2021).
8 Liu, H. et al. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res, doi:10.1038/s41422-021-00496-8 (2021).
9 Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature 593, 266-269 (2021).
10 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science 372 (2021).
11 Annavajhala, M. K. et al. A Novel SARS-CoV-2 Variant of Concern, B.1.526, Identified in New York. medRxiv, doi:10.1101/2021.02.23.21252259 (2021).
12 Nonaka, C. K. V. et al. Genomic Evidence of SARS-CoV-2 Reinfection Involving E484K Spike Mutation, Brazil. Emerg Infect Dis 27, doi:10.3201/eid2705.210191 (2021).
13 Tegally, H. et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med 27, 440-+, doi:10.1038/s41591-021-01255-3 (2021).
14 Hirotsu, Y. & Omata, M. Detection of R.1 lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with spike protein W152L/E484K/G769V mutations in Japan. PLoS Pathog 17, e1009619, doi:10.1371/journal.ppat.1009619 (2021).
15 Edara, V.-V. et al. Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B. 1.617. 1 variant. bioRxiv (2021).
16 Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-+, doi:10.1038/s41586-020-2179-y (2020).
17 Yuan, M., Liu, H. J., Wu, N. I. C. & Wilson, I. A. Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biochem Bioph Res Co 538, 192-203, doi:10.1016/j.bbrc.2020.10.012 (2021).
18 Zhou, D. et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, doi:10.1016/j.cell.2021.02.037 (2021).
19 Plante, J. A. et al. The variant gambit: COVID-19's next move. Cell Host Microbe 29, 508-515, doi:10.1016/j.chom.2021.02.020 (2021).
20 Yadav, P. D. et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis, doi:10.1093/cid/ciab411 (2021).
21 Singh, J., Rahman, S. A., Ehtesham, N. Z., Hira, S. & Hasnain, S. E. SARS-CoV-2 variants of concern are emerging in India. Nat Med, 1-3 (2021).
22 Organization, W. H. COVID-19 weekly epidemiological update, edition 43, 8 June 2021. (2021).
23 Bernal, J. L. et al. Effectiveness of COVID-19 vaccines against the B. 1.617. 2 variant. medRxiv (2021).
24 Saito, A. et al. SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion. bioRxiv (2021).
25 Bugembe, D. L. et al. A SARS-CoV-2 lineage A variant (A. 23.1) with altered spike has emerged and is dominating the current Uganda epidemic. MedRxiv (2021).
26 Guthmiller, J. J. et al. SARS-CoV-2 Infection Severity Is Linked to Superior Humoral Immunity against the Spike. Mbio 12, doi:ARTN e02940-20
10.1128/mBio.02940-20 (2021).
27 Dugan, H. L. et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity (2021).
28 Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115-+, doi:10.1038/s41586-020-2380-z (2020).
29 Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443-449, doi:10.1038/s41586-020-2548-6 (2020).
30 Greaney, A. J. et al. Mutational escape from the polyclonal antibody response to SARS-CoV-2 infection is largely shaped by a single class of antibodies. bioRxiv, doi:10.1101/2021.03.17.435863 (2021).
31 Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850-+, doi:10.1126/science.abf9302 (2021).
32 Greaney, A. J. et al. Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29, 44-57 e49, doi:10.1016/j.chom.2020.11.007 (2021).
33 Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220, doi:10.1038/s41586-020-2180-5 (2020).
34 Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182, 1295-+, doi:10.1016/j.cell.2020.08.012 (2020).
35 Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 9, doi:ARTN e61312
10.7554/eLife.61312 (2020).
36 Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682-+, doi:10.1038/s41586-020-2852-1 (2020).
37 Yuan, M. et al. Structural basis of a shared antibody response to SARS-CoV-2. Science 369, 1119-+, doi:10.1126/science.abd2321 (2020).
38 Yuan, M., Liu, H., Wu, N. C. & Wilson, I. A. Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biochem Biophys Res Commun 538, 192-203, doi:10.1016/j.bbrc.2020.10.012 (2021).
39 Cherian, S. et al. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. BioRxiv (2021).
40 Thomson, E. C. et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184, 1171-+, doi:10.1016/j.cell.2021.01.037 (2021).
41 Deng, X. et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv, doi:10.1101/2021.03.07.21252647 (2021).
42 Galson, J. D. et al. Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Front Immunol 11, 605170, doi:10.3389/fimmu.2020.605170 (2020).
43 Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437-+, doi:10.1038/s41586-020-2456-9 (2020).
44 Schmitz, A. J. et al. A public vaccine-induced human antibody protects against SARS-CoV-2 and emerging variants. bioRxiv, doi:10.1101/2021.03.24.436864 (2021).
45 Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, doi:10.1126/science.abh2644 (2021).
46 Amanat, F. et al. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD and S2. Cell (2021).
47 Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650-655, doi:10.1126/science.abc6952 (2020).
48 Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339-1343, doi:10.1126/science.abe1107 (2020).
49 Shrock, E. et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370, doi:10.1126/science.abd4250 (2020).
50 Chan, C. E. Z. et al. The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS One 16, e0253487, doi:10.1371/journal.pone.0253487 (2021).
51 Cao, Y. L. et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell 182, 73-+, doi:10.1016/j.cell.2020.05.025 (2020).
52 Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902 e1821, doi:10.1016/j.cell.2019.05.031 (2019).
53 Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 41, W34-40, doi:10.1093/nar/gkt382 (2013).
54 Guthmiller, J. J., Dugan, H. L., Neu, K. E., Lan, L. Y. & Wilson, P. C. An Efficient Method to Generate Monoclonal Antibodies from Human B Cells. Methods Mol Biol1904, 109-145, doi:10.1007/978-1-4939-8958-4_5 (2019).