1 Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54-60, doi:10.1038/nature10354 (2011).
2 Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat Genet 46, 543-550, doi:10.1038/ng.2982 (2014).
3 Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135-140, doi:10.1038/s41586-020-2896-2 (2020).
4 Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27, 321-332, doi:10.1038/s41591-020-01183-8 (2021).
5 Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772, doi:10.1136/bmjopen-2014-006772 (2015).
6 Boomsma, D. I. et al. The Genome of the Netherlands: design, and project goals. Eur J Hum Genet 22, 221-227, doi:10.1038/ejhg.2013.118 (2014).
7 Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302-2315 e2312, doi:10.1016/j.cell.2021.03.024 (2021).
8 Vinke, P. C. et al. Development of the food-based Lifelines Diet Score (LLDS) and its application in 129,369 Lifelines participants. Eur J Clin Nutr 72, 1111-1119, doi:10.1038/s41430-018-0205-z (2018).
9 Lianmin, C. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell, 185 (2021).
10 Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51, 600-605, doi:10.1038/s41588-019-0350-x (2019).
11 Yousri, N. A. et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nature Communications 9, doi:ARTN 33310.1038/s41467-017-01972-9 (2018).
12 Bradley, P. H. & Pollard, K. S. Building a chemical blueprint for human blood. Nature 588, 36-37, doi:10.1038/d41586-020-03122-6 (2020).
13 Kurilshikov, A. et al. Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk: A Cross-Sectional Study. Circ Res 124, doi:10.1161/CIRCRESAHA.118.314642 (2019).
14 Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46, D608-D617, doi:10.1093/nar/gkx1089 (2018).
15 Zhao, Y. et al. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J Agric Food Chem 58, 4844-4852, doi:10.1021/jf904464u (2010).
16 Jiang, Q., Christen, S., Shigenaga, M. K. & Ames, B. N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 74, 714-722, doi:10.1093/ajcn/74.6.714 (2001).
17 Pallister, T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci Rep 7, 13670, doi:10.1038/s41598-017-13722-4 (2017).
18 Razavi, A. C. et al. Novel Findings From a Metabolomics Study of Left Ventricular Diastolic Function: The Bogalusa Heart Study. J Am Heart Assoc 9, e015118, doi:10.1161/JAHA.119.015118 (2020).
19 Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat Genet, 322-328, doi:10.1038/s41588-018-0066-3 (2018).
20 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1826, doi:10.1038/s41467-017-01261-5 (2017).
21 Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005-D1012, doi:10.1093/nar/gky1120 (2019).
22 Lee, H. H. & Ho, R. H. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol 83, 1176-1184, doi:10.1111/bcp.13207 (2017).
23 Group, S. C. et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 359, 789-799, doi:10.1056/NEJMoa0801936 (2008).
24 Yu, B. et al. Loss-of-function variants influence the human serum metabolome. Sci Adv 2, e1600800, doi:10.1126/sciadv.1600800 (2016).
25 Chang, Y. et al. Fragment-based discovery of novel pentacyclic triterpenoid derivatives as cholesteryl ester transfer protein inhibitors. European journal of medicinal chemistry 126, 143-153 (2017).
26 Schlosser, P. et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat Genet 52, 167-176, doi:10.1038/s41588-019-0567-8 (2020).
27 Selinski, S., Blaszkewicz, M., Ickstadt, K., Hengstler, J. G. & Golka, K. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch Toxicol 87, 2129-2139, doi:10.1007/s00204-013-1157-7 (2013).
28 Suhre, K. et al. A genome-wide association study of metabolic traits in human urine. Nat Genet 43, 565-569, doi:10.1038/ng.837 (2011).
29 Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 42, 978-984, doi:10.1038/ng.687 (2010).
30 Wang, Z. & Zhao, Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9, 416-431, doi:10.1007/s13238-018-0549-0 (2018).
31 Seyed Hameed, A. S., Rawat, P. S., Meng, X. & Liu, W. Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol Adv 43, 107576, doi:10.1016/j.biotechadv.2020.107576 (2020).
32 Gacesa, R. et al. The Dutch Microbiome Project defines factors that shape the healthy gut microbiome. bioRxiv, 2020.2011.2027.401125, doi:10.1101/2020.11.27.401125 (2020).
33 Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nature Communications 11, 4018, doi:10.1038/s41467-020-17840-y (2020).
34 Karcher, N. et al. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. Genome Biol 21, 138, doi:10.1186/s13059-020-02042-y (2020).
35 Chen, L. et al. Genetic and Microbial Associations to Plasma and Fecal Bile Acids in Obesity Relate to Plasma Lipids and Liver Fat Content. Cell Rep 33, 108212, doi:10.1016/j.celrep.2020.108212 (2020).
36 Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in microbiology 7, 185 (2016).
37 Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med 10, eaap8914, doi:10.1126/scitranslmed.aap8914 (2018).
38 Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 10, 766, doi:10.15252/msb.20145645 (2014).
39 Andreu, V. P. et al. A systematic analysis of metabolic pathways in the human gut microbiota. bioRxiv (2021).
40 Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43-48, doi:10.1038/s41586-019-1065-y (2019).
41 Natella, F., Nardini, M., Belelli, F. & Scaccini, C. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am J Clin Nutr 86, 604-609, doi:10.1093/ajcn/86.3.604 (2007).
42 Song, Y. et al. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res Int 137, 109410, doi:10.1016/j.foodres.2020.109410 (2020).
43 Salau, V. F. et al. Ferulic Acid Modulates Dysfunctional Metabolic Pathways and Purinergic Activities, While Stalling Redox Imbalance and Cholinergic Activities in Oxidative Brain Injury. Neurotox Res 37, 944-955, doi:10.1007/s12640-019-00099-7 (2020).
44 Biegel, E. & Muller, V. Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 107, 18138-18142, doi:10.1073/pnas.1010318107 (2010).
45 Holland, I. B. & Blight, M. A. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293, 381-399, doi:10.1006/jmbi.1999.2993 (1999).
46 Fujita, T., Fujita, M., Kodama, T., Hada, T. & Higashino, K. Determination of D- and L-pipecolic acid in food samples including processed foods. Ann Nutr Metab 47, 165-169, doi:10.1159/000070040 (2003).
47 Kawasaki, H., Hori, T., Nakajima, M. & Takeshita, K. Plasma levels of pipecolic acid in patients with chronic liver disease. Hepatology 8, 286-289, doi:10.1002/hep.1840080216 (1988).
48 Miras-Avalos, J. M., Bouzas-Cid, Y., Trigo-Cordoba, E., Orriols, I. & Falque, E. Amino Acid Profiles to Differentiate White Wines from Three Autochtonous Galician Varieties. Foods 9, doi:10.3390/foods9020114 (2020).
49 Alexander Kurilshikov, I. C. v. d. M., Lianmin Chen , Marc Jan Bonder , Kiki Schraa , Joost Rutten , Niels P Riksen , Jacqueline de Graaf , Marije Oosting , Serena Sanna , Leo AB Joosten , Marinette van der Graaf , Tessa Brand , Debby PY Koonen , Martijn JR van Faassen , P Eline Slagboom , Ramnik J Xavier , Folkert Kuipers , Marten Hofker , Cisca Wijmenga , Mihai G Netea , Alexandra Zhernakova , Jingyuan Fu. Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk: A Cross-Sectional Study. Circulation Research 124, https://doi.org/10.1161/CIRCRESAHA.1118.314642, doi:https://doi.org/10.1161/CIRCRESAHA.118.314642 (2019).
50 Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nature Communications 10, doi:ARTN 450510.1038/s41467-019-12476-z (2019).
51 Fuhrer, T., Zampieri, M., Sevin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene-metabolome associations in Escherichia coli. Molecular Systems Biology 13, doi:ARTN 90710.15252/msb.20167150 (2017).
52 Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-Throughput, Accurate Mass Metabolome Profiling of Cellular Extracts by Flow Injection - Time-of-Flight Mass Spectrometry. Analytical Chemistry 83, 7074-7080, doi:10.1021/ac201267k (2011).
53 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009).
54 Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421-432, doi:10.1093/bioinformatics/bty648 (2019).
55 Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12, 902-903, doi:10.1038/nmeth.3589 (2015).
56 Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nature Methods 15, 962-968 (2018).
57 Bateman, A. et al. UniProt: a hub for protein information. Nucleic Acids Res 43, D204-D212 (2015).
58 Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44, D471-D480 (2016).
59 Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 46, D633-D639 (2018).
60 Aitchison, J. The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological) 44, 139-160 (1982).
61 Zhernakova, D. V. et al. Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat Genet 50, 1524-1532, doi:10.1038/s41588-018-0224-7 (2018).
62 Das, S. et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284-1287, doi:10.1038/ng.3656 (2016).
63 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 1279-1283, doi:10.1038/ng.3643 (2016).
64 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met 57, 289-300 (1995).
65 Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740-748, doi:10.1136/gutjnl-2015-310376 (2016).
66 Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565-569, doi:10.1126/science.aad3369 (2016).
67 Fehrmann, R. S. N. et al. Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA. Plos Genetics 7, doi:ARTN e100219710.1371/journal.pgen.1002197 (2011).
68 Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068-2069, doi:10.1093/bioinformatics/btu153 (2014).
69 Genome of the Netherlands, C. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet 46, 818-825, doi:10.1038/ng.3021 (2014).