1 Amanat, F. & Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 52, 583-589, doi:10.1016/j.immuni.2020.03.007 (2020).
2 van Doremalen, N. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, doi:10.1038/s41586-020-2608-y (2020).
3 Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med, doi:10.1056/NEJMoa2024671 (2020).
4 Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, doi:10.1038/s41586-020-2607-z (2020).
5 Yu, J. et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, doi:10.1126/science.abc6284 (2020).
6 Chappell, K., Watterson, D. & Young, P. Chimeric Molecules and Uses Thereof. (2018).
7 Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526-532, doi:10.1038/nature11414 (2012).
8 Huang, K., Incognito, L., Cheng, X., Ulbrandt, N. D. & Wu, H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J Virol 84, 8132-8140, doi:10.1128/JVI.02699-09 (2010).
9 (WHO), W. H. O. Novel Coronavirus (2019-nCoV) Situation Report 1. (https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf, 2020).
10 ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med 3, e237 (2006).
11 Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263, doi:10.1126/science.abb2507 (2020).
12 Hsieh, C. L. et al. Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes. bioRxiv, doi:10.1101/2020.05.30.125484 (2020).
13 Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290-295, doi:10.1038/s41586-020-2349-y (2020).
14 Hurlburt, N. K. et al. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. bioRxiv, doi:10.1101/2020.06.12.148692 (2020).
15 Vogel, F. R. Improving vaccine performance with adjuvants. Clin Infect Dis 30 Suppl 3, S266-270, doi:10.1086/313883 (2000).
16 El Sahly, H. MF59™ as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 9, 1135-1141, doi:10.1586/erv.10.111 (2010).
17 Tseng, C. T. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 7, e35421, doi:10.1371/journal.pone.0035421 (2012).
18 Knudsen, N. P. et al. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep 6, 19570, doi:10.1038/srep19570 (2016).
19 (WHO), W. H. O. 1st WHO International Standard for anti-SARS-CoV-2 antibodies. (https://www.who.int/biologicals/One_Pager_anti-SARS_CoV-2_antibodies.pdf?ua=1, 2020).
20 Ranasinghe, C., Trivedi, S., Stambas, J. & Jackson, R. J. Unique IL-13Ralpha2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity. Mucosal Immunol 6, 1068-1080, doi:10.1038/mi.2013.1 (2013).
21 Wijesundara, D. K. et al. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination. PLoS One 9, e105366, doi:10.1371/journal.pone.0105366 (2014).
22 (WHO), W. H. O. DRAFT landscape of COVID-19 candidate vaccines –
15 July 2020. (https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines, 2020).
23 Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R. & Larsen, S. The complexity and cost of vaccine manufacturing - An overview. Vaccine 35, 4064-4071, doi:10.1016/j.vaccine.2017.06.003 (2017).
24 Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science, doi:10.1126/science.abd0831 (2020).
25 Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 5, doi:10.1126/sciimmunol.abd2071 (2020).
26 Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834-838, doi:10.1038/s41586-020-2342-5 (2020).
27 Chan, J. F. et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis, doi:10.1093/cid/ciaa325 (2020).
28 Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595, doi:10.1073/pnas.2009799117 (2020).
29 Huo, J. et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol, doi:10.1038/s41594-020-0469-6 (2020).
30 Wang, L. et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 6, 7712, doi:10.1038/ncomms8712 (2015).
31 Frey, G. et al. Distinct conformational states of HIV-1 gp41 are recognized by neutralizing and non-neutralizing antibodies. Nat Struct Mol Biol 17, 1486-1491, doi:10.1038/nsmb.1950 (2010).
32 Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331-332 (2017).
33 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192, 216-221 (2015).
34 Scheres, S. H. A Bayesian view on cryo-EM structure determination. J Mol Biol 415, 406-418, doi:10.1016/j.jmb.2011.11.010 (2012).
35 Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78, 3572-3577, doi:10.1128/jvi.78.7.3572-3577.2004 (2004).
36 Caly, L. et al. Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia. Med J Aust 212, 459-462, doi:10.5694/mja2.50569 (2020).
37 Mekonnen, Z. A. et al. Single-Dose Vaccination with a Hepatotropic Adeno-associated Virus Efficiently Localizes T Cell Immunity in the Liver with the Potential To Confer Rapid Protection against Hepatitis C Virus. J Virol 93, doi:10.1128/JVI.00202-19 (2019).
38 Grubor-Bauk, B. et al. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. Sci Adv 5, eaax2388, doi:10.1126/sciadv.aax2388 (2019).
39 (WHO), W. H. O. Guidelines on the nonclinical evaluation of vaccine adjuvants
and adjuvanted vaccines. (https://www.who.int/biologicals/areas/vaccines/ADJUVANTS_Post_ECBS_edited_clean_Guidelines_NCE_Adjuvant_Final_17122013_WEB.pdf?ua=1, 2013).
40 OECD. Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents. (2008).
41 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020).