1. Danesh, J. et al. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321, 199-204 (2000).
2. Dehghan, A. et al. Risk of type 2 diabetes attributable to C-reactive protein and other risk factors. Diabetes Care 30, 2695-9 (2007).
3. Schmidt, M.I. et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353, 1649-52 (1999).
4. Saukkonen, T. et al. Adipokines and inflammatory markers in elderly subjects with high risk of type 2 diabetes and cardiovascular disease. Sci Rep 8, 12816 (2018).
5. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350, 1387-97 (2004).
6. Leuzzi, G. et al. C-reactive protein level predicts mortality in COPD: a systematic review and meta-analysis. Eur Respir Rev 26(2017).
7. Kim, J. et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat Commun 11, 1898 (2020).
8. Valkanova, V., Ebmeier, K.P. & Allan, C.L. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150, 736-44 (2013).
9. Ligthart, S. et al. Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. Am J Hum Genet 103, 691-706 (2018).
10. Timpson, N.J. et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond) 35, 300-8 (2011).
11. Sarin, H.V. et al. Substantial fat mass loss reduces low-grade inflammation and induces positive alteration in cardiometabolic factors in normal-weight individuals. Sci Rep 9, 3450 (2019).
12. Johansson-Persson, A. et al. A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects. Eur J Nutr 53, 39-48 (2014).
13. Kasapis, C. & Thompson, P.D. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol 45, 1563-9 (2005).
14. Liu, Y.Z., Wang, Y.X. & Jiang, C.L. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci 11, 316 (2017).
15. Wiklund, P. et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics 11, 97 (2019).
16. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81-86 (2017).
17. Baylin, S.B. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2 Suppl 1, S4-11 (2005).
18. Lokk, K. et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol 15, r54 (2014).
19. Heard, E. & Martienssen, R.A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95-109 (2014).
20. Ligthart, S. et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol 17, 255 (2016).
21. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-30 (2015).
22. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81-86 (2017).
23. Somineni, H.K. et al. Blood-Derived DNA Methylation Signatures of Crohn's Disease and Severity of Intestinal Inflammation. Gastroenterology 156, 2254-2265 e3 (2019).
24. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-80 (2014).
25. Wang, J. et al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res 41, D171-6 (2013).
26. Li, M. et al. EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res 47, D983-D988 (2019).
27. Reese, S.E. et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol 143, 2062-2074 (2019).
28. Zaghlool, S.B. et al. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun 11, 15 (2020).
29. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet 19, 807-12 (2011).
30. Davies, N.M., Holmes, M.V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).
31. Lawlor, D.A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int J Epidemiol 45, 1866-1886 (2016).
32. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 25, 1822-1832 (2019).
33. Tobi, E.W. et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv 4, eaao4364 (2018).
34. Kular, L. et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun 9, 2397 (2018).
35. Joehanes, R. et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet 9, 436-447 (2016).
36. Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun 8, 14617 (2017).
37. Huan, T. et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat Commun 10, 4267 (2019).
38. Xu, C.J. et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med 6, 379-388 (2018).
39. Ferrero-Miliani, L., Nielsen, O.H., Andersen, P.S. & Girardin, S.E. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147, 227-35 (2007).
40. Prins, B.P. et al. Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Med 13, e1001976 (2016).
41. Bautista, L.E. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 17, 223-30 (2003).
42. Chambers, J.C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3, 526-534 (2015).
43. Imboden, M. et al. Epigenome-wide association study of lung function level and its change. Eur Respir J 54(2019).
44. Sproston, N.R. & Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol 9, 754 (2018).
45. Ouchi, N. et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107, 671-4 (2003).
46. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17, 208 (2016).
47. van Iterson, M., van Zwet, E.W. & Heijmans, B.T. Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. Genome Biol 18, 19 (2017).
48. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45-68 (2014).