1.Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant physiology 2006, 140(2):411–432.
2.Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Ratcliffe O, Samaha R: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290(5499):2105–2110.
3.Jofuku KD, Den Boer B, Van Montagu M, Okamuro JK: Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell 1994, 6(9):1211–1225.
4.François L, Verdenaud M, Fu X, Ruleman D, Dubois A, Vandenbussche M, Bendahmane A, Raymond O, Just J, Bendahmane M: A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Scientific reports 2018, 8(1):12912.
5.Busov V, Carneros E, Yakovlev I: EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant signaling behavior 2016, 11(2):e1073873.
6.Li A, Yu X, Cao B, Peng L, Gao Y, Feng T, Li H, Ren Z: LkAP2L2, an AP2/ERF transcription factor gene of Larix kaempferi, with pleiotropic roles in plant branch and seed development. Russian journal of genetics 2017, 53(12):1335–1342.
7.Müller M, Munné-Bosch S: Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant physiology 2015, 169(1):32–41.
8.Yao Y, He RJ, Xie QL, Zhao Xh, Deng Xm, He Jb, Song L, He J, Marchant A, Chen XY: ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)‐dependent mechanism in response to different stresses in Arabidopsis. New Phytologist 2017, 213(4):1667–1681.
9.Phukan UJ, Jeena GS, Tripathi V, Shukla RK: Regulation of Apetala2/Ethylene response factors in plants. Frontiers in plant science 2017, 8:150.
10.Wei G, Pan Y, Lei J, Zhu Y: Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. Journal of biochemistry and molecular biology 2005, 38(4):440.
11.Chandler JW, Werr W: DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. Journal of experimental botany 2017, 68(13):3457–3472.
12.Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E, Suárez-López P, Pelaz S: RAV genes: regulation of floral induction and beyond. Annals of botany 2014, 114(7):1459–1470.
13.Fu M, Kang HK, Son S-H, Kim S-K, Nam KH: A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant and Cell Physiology 2014, 55(11):1892–1904.
14.Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ, Nelson AD, Wai CM: Origin and evolution of the octoploid strawberry genome. Nature genetics 2019, 51(3):541.
15.Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP: The genome of woodland strawberry (Fragaria vesca). Nature genetics 2011, 43(2):109.
16.Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J: The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC plant biology 2018, 18(1):46.
17.Lakhwani D, Pandey A, Dhar YV, Bag SK, Trivedi PK, Asif MHJSr: Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Scientific reports 2016, 6:18878.
18.Girardi CL, Rombaldi CV, Dal Cero J, Nobile PM, Laurens F, Bouzayen M, Quecini V: Genome-wide analysis of the AP2/ERF superfamily in apple and transcriptional evidence of ERF involvement in scab pathogenesis. Scientia Horticulturae 2013, 151:112–121.
19.Guo A, Zhu Q, Chen X, Luo J: GSDS: a gene structure display server. Yi chuan = Hereditas 2007, 29(8):1023–1026.
20.Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic acids research 2009, 37(suppl_2):W202-W208.
21.Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H: MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic acids research 2012, 40(7):e49-e49.
22.Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R: Arabidopsis RAP2. 2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiology 2010, 153(2):757–772.
23.Shen S-l, Yin X-r, Zhang B, Xie X-l, Jiang Q, Grierson D, Chen K-s: CitAP2. 10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’orange. Journal of experimental botany 2016, 67(14):4105–4115.
24.Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Bossche RV, De Milde L, Yoshizumi T, Matsui M: ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant physiology 2013, 162(1):319–332.
25.Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G: An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant cell reports 2012, 31(2):349–360.
26.Liu M, Pirrello J, Kesari R, Mila I, Roustan JP, Li Z, Latché A, Pech JC, Bouzayen M, Regad F: A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. The Plant Journal 2013, 76(3):406–419.
27.Liu M, Diretto G, Pirrello J, Roustan JP, Li Z, Giuliano G, Regad F, Bouzayen M: The chimeric repressor version of an E thylene Response Factor (ERF) family member, Sl‐ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytologist 2014, 203(1):206–218.
28.Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR: ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PloS one 2012, 7(4):e35995.
29.Upadhyay RK, Soni DK, Singh R, Dwivedi UN, Pathre UV, Nath P, Sane AP: SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth. Journal of experimental botany 2013, 64(11):3237–3247.
30.Shi X, Gupta S, Rashotte AM: Characterization of two tomato AP2/ERF genes, SlCRF1 and SlCRF2 in hormone and stress responses. Plant cell reports 2014, 33(1):35–45.
31.Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J-L, Pan L, Lu Z, Cui G, Li G: PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Horticulture research 2019, 6(1):19.
32.Yin X-r, Allan AC, Chen K-s, Ferguson IB: Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiology 2010, 153(3):1280–1292.
33.Song C-P, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J-K: Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. The Plant Cell 2005, 17(8):2384–2396.
34.Fischer U, Dröge-Laser W: Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interactions 2004, 17(10):1162–1171.
35.Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A: Apple (Malus domestica) Md ERF 2 negatively affects ethylene biosynthesis during fruit ripening by suppressing Md ACS 1 transcription. The Plant Journal 2016, 88(5):735–748.
36.Anh Tuan P, Bai S, Saito T, Imai T, Ito A, Moriguchi T: Involvement of EARLY BUD-BREAK, an AP2/ERF transcription factor gene, in bud break in Japanese pear (Pyrus pyrifolia Nakai) lateral flower buds: expression, histone modifications and possible target genes. Plant Cell Physiology 2016, 57(5):1038–1047.
37.Gu Y-Q, Wildermuth MC, Chakravarthy S, Loh Y-T, Yang C, He X, Han Y, Martin GB: Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell 2002, 14(4):817–831.
38.Li Y, Zhu B, Xu W, Zhu H, Chen A, Xie Y, Shao Y, Luo Y: LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant cell reports 2007, 26(11):1999–2008.
39.Li X, Xu Y, Shen S, Yin X, Klee H, Zhang B, Chen K: Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of experimental botany 2017, 68(17):4929–4938.
40.Han Y-C, Kuang J-F, Chen J-Y, Liu X-C, Xiao Y-Y, Fu C-C, Wang J-N, Wu K-Q, Lu W-J: Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology 2016, 171(2):1070–1084.
41.Chen T, Yang Q, Zhang X, Ding W, Gruber M: An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis. Plant cell reports 2012, 31(9):1737–1746.
42.Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K: Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant molecular biology 2005, 58(4):585–596.
43.McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K: Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant physiology 2005, 139(2):949–959.
44.Zhang Z, Wang J, Zhang R, Huang R: The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal 2012, 71(2):273–287.
45.Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X-C, Huang R: Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant molecular biology 2004, 55(6):825–834.
46.Berrocal‐Lobo M, Molina A, Solano R: Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal 2002, 29(1):23–32.
47.Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S: ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiology 2005, 139(3):1185–1193.
48.Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni JJTPJ: Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. The Plant Journal 2012, 70(2):191–204.
49.Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche A, Pech JC, Bouzayen M: Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiology 2006, 47(9):1195–1205.
50.Zhang H, Huang Z, Xie B, Chen Q, Tian X, Zhang X, Zhang H, Lu X, Huang D, Huang R: The ethylene-, jasmonate-, abscisic acid-and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 2004, 220(2):262–270.
51.Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R: Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant molecular biology 2004, 55(2):183–192.
52.Lee J-H, Hong J-P, Oh S-K, Lee S, Choi D, Kim W: The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant molecular biology 2004, 55(1):61–81.
53.Yi SY, Kim J-H, Joung Y-H, Lee S, Kim W-T, Yu SH, Choi D: The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiology 2004, 136(1):2862–2874.
54.Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P: HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal 2010, 62(2):302–315.
55.Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G: Arabidopsis RAP2. 2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytologist 2012, 195(2):450–460.
56.Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P: Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Development 2000, 14(16):2085–2096.
57.Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S: The Arabidopsis SUCROSE UNCOUPLED–6 gene is identical to ABSCISIC ACID INSENSITIVE‐4: involvement of abscisic acid in sugar responses. The Plant Journal 2000, 23(5):577–585.
58.Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K: The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 2011, 21(6):508–514.
59.Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY: Overexpression of WXP1, a putative Medicago truncatula AP2 domain‐containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). The Plant Journal 2005, 42(5):689–707.
60.Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D: Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus× domestica) results in short-day induced dormancy and increased cold hardiness. Planta 2011, 233(5):971–983.
61.Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K: dwarf and delayed‐flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal 2004, 37(5):720–729.
62.Wilson K, Long D, Swinburne J, Coupland G: A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. The Plant Cell 1996, 8(4):659–671.
63.Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R: Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. Journal of experimental botany 2009, 61(1):261–273.
64.Wang X, Zeng W, Ding Y, Wang Y, Niu L, Yao J-L, Pan L, Lu Z, Cui G, Li G: Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science 2019, 283:116–126.
65.Hollender CA, Kang C, Darwish O, Geretz A, Matthews BF, Slovin J, Alkharouf N, Liu Z: Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant physiology 2014, 165(3):1062–1075.
66.Hollender CA, Geretz AC, Slovin JP, Liu Z: Flower and early fruit development in a diploid strawberry, Fragaria vesca. Planta 2012, 235(6):1123–1139.
67.Toljamo A, Blande D, Kärenlampi S, Kokko H: Reprogramming of strawberry (Fragaria vesca) root transcriptome in response to Phytophthora cactorum. PLoS One 2016, 11(8):e0161078.
68.Shu L-J, Liao J-Y, Lin N-C, Chung C-L: Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLoS One 2018, 13(10):e0205790.
69.Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J: Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Molecular plant 2018, 11(3):414–428.
70.Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K: DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and biophysical research communications 2002, 290(3):998–1009.
71.Zhang C, Shangguan L, Ma R, Sun X, Tao R, Guo L, Korir N, Yu M: Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Genet Mol Res 2012, 11(4):4789–4809.
72.Licausi F, Giorgi FM, Zenoni S, Osti F, Pezzotti M, Perata P: Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC genomics 2010, 11(1):719.
73.Davis JC, Petrov DA: Preferential duplication of conserved proteins in eukaryotic genomes. PLoS biology 2004, 2(3):e55.
74.Pegueroles C, Laurie S, Albà MM: Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Molecular biology and evolution 2013, 30(8):1830–1842.
75.Sémon M, Wolfe KH: Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proceedings of the National Academy of Sciences 2008, 105(24):8333–8338.
76.Force A, Lynch M, Pickett FB, Amores A, Yan Y-l, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151(4):1531–1545.
77.Huot B, Yao J, Montgomery BL, He SY: Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular plant 2014, 7(8):1267–1287.
78.Zhang Y, Yin X, Xiao Y, Zhang Z, Li S, Liu X, Zhang B, Yang X, Grierson D, Jiang G: An ETHYLENE RESPONSE FACTOR-MYB transcription complex regulates furaneol biosynthesis by activating QUINONE OXIDOREDUCTASE expression in strawberry. Plant physiology 2018, 178(1):189–201.
79.Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M: WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell 2017, 29(1):54–69.
80.Iwase A, Mitsuda N, Ikeuchi M, Ohnuma M, Koizuka C, Kawamoto K, Imamura J, Ezura H, Sugimoto K: Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco. Plant signaling & behavior 2013, 8(12):e27432.
81.Wollmann H, Mica E, Todesco M, Long JA, Weigel D: On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 2010, 137(21):3633–3642.
82.Liu Z, Meyerowitz EM: LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 1995, 121(4):975–991.
83.Jack T: Molecular and genetic mechanisms of floral control. The Plant Cell 2004, 16(suppl 1):S1-S17.
84.Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H: A short history of MADS-box genes in plants. Plant molecular biology 2000, 42(1):115–149.
85.Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q: An APETALA2 Homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Frontiers in plant science 2018, 9:481.
86.Li Z, Tian Y, Xu J, Fu X, Gao J, Wang B, Han H, Wang L, Peng R, Yao Q: A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Plant Physiology and Biochemistry 2018, 132:683–695.
87.Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C: The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant and Cell Physiology 2015, 56(5):992–1005.
88.Qi X-n, Xiao Y-y, Fan Z-q, Chen J-y, Lu W-j, Kuang J-f: A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance. Postharvest Biology and Technology 2016, 120:222–231.
89.Klemme S, De Smet Y, Cammue B, De Block M: Selection of Salicylic Acid Tolerant Epilines in Brassica napus. Agronomy 2019, 9(2):92.
90.Dong L, Cheng Y, Wu J, Cheng Q, Li W, Fan S, Jiang L, Xu Z, Kong F, Zhang D: Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Journal of experimental botany 2015, 66(9):2635–2647.
91.Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S: An AP2/ERF gene, IbRAP2–12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant science 2019, 281:19–30.
92.Long L, Yang W-W, Liao P, Guo Y-W, Kumar A, Gao W: Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant science 2019, 281:72–81.
93.Zhao S-P, Xu Z-S, Zheng W-J, Zhao W, Wang Y-X, Yu T-F, Chen M, Zhou Y-B, Min D-H, Ma Y-Z: Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV–03 involvement in salt and drought stresses and exogenous ABA treatment. Frontiers in Plant Science 2017, 8:905.
94.Duan Y-B, Li J, Qin R-Y, Xu R-F, Li H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B: Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant molecular biology 2016, 90(1–2):49–62.
95.Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK: Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant molecular biology 2006, 61(6):897.