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Abstract Fused deposition modelling (FDM) 3D print-

ing, as a supporting technology in social manufacturing

and cloud manufacturing, is a rapidly growing technol-

ogy in the era of industry 4.0. It produces objects with

the layer-by-layer material accumulation technique. How-

ever, qualitative uncertainties are the common chal-

lenges yet. In order to assure print quality, studying

the error causing parameters and minimizing their ef-

fects is important. This paper presents a feedback-based

error compensation strategy, which integrates fuzzy in-

ference system and grey wolf optimization algorithm.

The objectives are twofold. First, the possible errors in

FDM 3D printing are discussed in detail and optimal

error causing parameters are obtained in percentage.

This is used to understand the effects of the printing

errors in every phase of the 3D printing process. From

the nine optimization configuration trials used, Config-

6 that has 100 number of iterations and 60 wolves is
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selected due to its higher convergence speed and best

fitness value. The integral absolute error (IAE) is used

as an objective function and the global minimum is

achieved in the iteration interval [86, 100]. The outputs

of this optimization problem is used to achieve the next

objective. Second, a closed-loop quality monitoring ap-

proach comprising of inner-loops and an outer-loop is

utilized. The three inner-loops are used to monitor the

errors during pre-printing, printing, and post-printing,

respectively. The outer-loop, on the other hand, is re-

sponsible for monitoring the aggregated errors in all the

three 3D printing phases. The error compensation sys-

tem simulation in Matlab is run for 10 seconds, and

the results show that the “normal” range deformation

factors are reached within less than 2 seconds for the

inner-loops, whereas the outer-loop deformation factor
is achieved within 7 seconds. The responses are within

the acceptable time range.

Keywords Industry 4.0 · 3D printing · Print quality ·
Error causing parameters · Deformations · Fuzzy

inference system

1 Introduction

The advancement of science and technology is improv-

ing people’s life quality. The mass production of com-

modities is becoming uncompetitive with the personal-

ized market. The individual interest oriented commodi-

ties are favored by the customers. Three dimensional

(3D) printing, as a massively distributed manufacturing

(MDM), is a viable solution for customer interest-based

fabrication [1]. 3D printing possesses the following steps

[2]. It starts from computer aided design (CAD) mod-

elling. Then, the CAD model gets into a certain slicing

algorithm to generate printing toolpath. Based on the
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Fig. 1 FDM 3D printing

defined toolpath, the part building is done. The last

step is post-processing in which the printed part is fur-

ther enhanced by the removal of support structures. An

arbitrary shape can be produced by fused-deposition-

modelling (FDM) 3D printing, schematically shown in

Fig. 1. FDM 3D printing, as a supporting technology

in social manufacturing and cloud manufacturing, is a

rapidly growing technology. It produces objects with

a layer-by-layer material accumulation technique [3,4].

In FDM, the thermoplastic filament is moved from the

extruder cold end to hot end, where it is heated until

molten. Then the filament in molten state is fed through

the nozzle to accumulate on the heated build platform

with layer-by-layer fashion until the finished part is pro-

duced. The advantages of FDM include simple technol-

ogy, affordable system cost, and the ability to create

complicated shapes and recommended manufacturing

time.

However, FDM 3D printing is suffering difficulties
in controlling errors during a phenomenon, like, noz-

zle clogging, material runout, excessive vibration, de-

fects associated with cooling and heating, and under

extrusion or over extrusion [5,6]. Problems affecting the

quality of 3D prints are also reported in [7]. Those fac-

tors reduce the reliability of FDM technique that fun-

damentally affect the quality of the printed part. Sur-

face roughness, porosity, geometric deviation, and poor

interconnection between layers [8,9] are some of the

3D printing inaccuracies, which result in print quality

issue. Optimization with regard to production speed,

product accuracy and development cost is an active

research area in 3D printing. This paper presents a

mechanism to enhance print quality by incorporating a

closed-loop control framework in 3D printing. An end-

to-end feedback-based error compensation mechanism

is proposed to minimize the errors associated with ev-

ery phase of the 3D printing process. Modelling the 3D

printing process mathematically, as a subset of digi-

tal twin technology, is the primary task before diving

into modelling and optimization of a control framework.

Digital twin is a virtual representation of physical sys-

tems in an attempt to high-fidelity modelling and simu-

lations. It monitors, simulates, diagnoses, predicts, and

controls the formation process and behavior of products

in the real environment. The first definition of digital

twin was made by Michael Grieves in 2003 for present-

ing product life cycle management (PLM). Its definition

in its original form was stated as a digital representation

of physical system, and emerged as an entity on its own

or some way of linkage with the physical system [10].

Rolle et al. [11] implemented a digital twin architecture

focusing on industry 4.0. This industrial revolution is

considered as a new technological wave transforming

industrial environment dramatically. Fuller et al. [12]

wrote a review paper on digital twin enabling technolo-

gies and their challenges in the three application do-

mains: manufacturing, healthcare and smart cities.

The rest of the paper elucidates the errors associ-

ated with every phase of the 3D printing process and

proposes an end-to-end error compensation strategy.

Section 2 presents the researchers’ perspectives on mech-

anisms for improving print quality, and also introduces

the use of control systems and optimization algorithms

in industries. Section 3 outlines the detailed descrip-

tion of the types of errors in every phase of 3D print-

ing. Section 4 proposes an end-to-end 3D printing error

compensation strategy. Section 5 presents results and

discussions, followed by conclusions and perspectives in

section 6.

2 Related work

Most of the existing 3D printers lack automatic er-

ror compensation and quality monitoring mechanism.

Therefore, nowadays, researchers are giving attention

to minimize the effects of 3D printing errors for assur-

ing print quality. Various types of error compensation

strategies are reported in the literature. The follow-

ing paragraph presents a detailed report on data-driven

print quality monitoring system in FDM 3D printing.

Liu et al. [13] proposed an image-based closed-loop

quality monitoring system for fused filament fabrication

(FFF), in which the quality issues are mitigated via on-

line processing parameter adjustment. Similarly, Faes

et al. [14] integrated a two-dimensional laser scanner

into a 3D printer machine, and monitored the process

state variables online to improve the accuracy of print-

ing. Ikeuchi et al. [15] developed a data-efficient neural

network model in cold spray additive manufacturing to

predict the geometry of the printed part. The proposed

model was also used for modelling of other deposition-

based additive manufacturing technologies. Saluja et al.
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[16] proposed a convolutional neural network (CNN)-

based warping detection system, which captures each

of the print layers and extracts the corners, and the ex-

tracted region of interest is then fed to a CNN model

to monitor the printing process. Cerro et al. [17] also

developed a machine learning model to predict surface

roughness of printed parts manufactured by using FDM

3D printer. Moreover, in-situ monitoring of FFF is re-

viewed [18,19], which then derives the FFF technology

to the next generation of systems by enabling robust

closed-loop control scheme in 3D printing.

Most of the aforementioned research works follow

component-wise (i.e., application-specific) quality mon-

itoring strategy to enhance the quality of the 3D print-

ing process. Thus, those print quality monitoring ap-

proaches may not probably consider and generalize all

the factors that affect the performance of the 3D printer.

The quality of the printed object is affected by every

phase of the 3D printing process. The objective of this

paper is to present an end-to-end quality monitoring

framework for minimizing the effects of the 3D printing

errors and further improving the quality of the printed

object. It considers the errors associated in pre-printing,

printing and post-printing. A feedback-based fuzzy in-

ference system (FIS) along with the grey wolf optimiza-

tion (GWO) algorithm is used for the error compen-

sation framework. The following paragraphs present a

detailed report on applications of FIS and GWO for

controlling and optimization task in industries.

Fuzzy logic was introduced by Lotfi A. Zadeh in

1965 [20]. Since then it has been applied to model im-

precise, linguistic and uncertain data [21,22]. Unlike

conventional control scheme, whose controlling perfor-

mance highly depends on the modelling accuracy of

physical system, fuzzy inference engine is convenient

when analytical model is difficult to get while expert

experience is available. Thus, it is a viable solution

to extend the controlling capability of fuzzy system

in manufacturing industry where analytical model is

missing while expert knowledge is available. Li et al.

[23] proposed a fuzzy multi-criteria modelling used in

service-oriented manufacturing for the problem of fuzzy

scheduling. Similarly, Wang et al. [24] used a dynamic

adaptive fuzzy system to evaluate the reliability of man-

ufacturing system with multiple production lines.

The GWO algorithm is first coined by Mirjalili et al.

[25]. It is a kind of meta-heuristic-based optimization

method that mimics the special hunting behavior of a

group of grey wolves living together. Mirjalili and his

co-workers tested the performance of GWO algorithm

with 29 well known functions and reported that the

algorithm provided very competitive performance com-

pared to the other meta-heuristic optimization meth-

ods. Ghorpade et al. [26] used GWO technique in au-

tomotive industry to position wireless sensor nodes op-

timally in the parking area for vehicle parking system.

Similarly, Yan et al. [27] magnified the performance of

GWO algorithm by benchmarking 23 widely used test

functions over a known engineering design problem.

3 An end-to-end error analysis in FDM 3D

printing

Before we go deep into the error compensation strategy

of an FDM 3D printing, it is very essential to discuss

the sources of errors associated with its printing pro-

cess. The main sources of errors are observed in the

three phases: pre-printing phase, printing phase, and

post-printing phase. Beyond the aforementioned error

sources, the 3D printing process is also affected by some

external disturbances that result in printing error. The

summed up errors are reflected in the quality of the

printed object. The general description of errors in ev-

ery phase of the 3D printing process is illustrated in

Fig. 2.

3.1 Pre-printing phase

File format conversion error and slicing error are the

two known causes of printing errors under this stage.

The surface of 3D model is represented by STereoLithog-

raphy (STL) file format with small triangles. But, this

file format is not the exact representation of the model,

which then results in some error in the printed object.

Cao and Miyamoto [28] proposed a direct slicing algo-
rithm which precisely slices the 3D CAD model and

reduces the errors caused by STL file conversion. Sim-

ilarly, Feng et al. [29] developed a direct slicing algo-

rithm for T-spline surfaces. Their work designs T-spline

surface and calculates the slicing points on the surface.

It then achieves better accuracy and higher manufac-

turing efficiency.

Slicing of the 3D model is the core and the very im-

portant task in the 3D printing process. Layer height

is one of the slicing parameter that plays a major role

for assuring the quality of the printed object. The thin-

ner the layers are, the better the quality of the ob-

ject will be. But, this results in lower printing speed.

On the contrary, thicker layer yields higher printing

speed. But, it leads to more steps in the printed object

that reduces the surface quality. To create an optimal

trade-off between fabrication time and surface quality,

Mao et al. [30] proposed an adaptive slicing method to

generate an efficient slicing plan. The proposed algo-

rithm is based on dynamic programming and searches
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Fig. 2 Source of errors in FDM 3D printing

for the best printing direction. Similarly, Garashchenko

and Zubkova [31] designed an adaptive slicing algorithm

which adopts variable layer height by considering the

angle between the surface of the object and the printing

direction. Their algorithm can then reduce the printing

time.

3.2 Printing phase

Processing parameters setting errors and machine er-

rors are the major causes of printing errors in this stage.

Processing parameters setting plays a crucial role for as-

suring the quality of the printed object. Optimal pro-

cessing parameters may reduce printing errors and then

enhance print quality. Print speed, print bed tempera-

ture, and extruder temperature are some of the main

parameters that affect the quality of the 3D printing

process [32]. Improper setting of those parameters may

lead to extruder clogging, under extrusion, over extru-

sion, etc., which severely affects the material deposi-

tion process, resulting in poor print quality. Zhang et

al. [33] proposed a method to predict surface roughness

in extrusion-based additive manufacturing by consider-

ing three processing parameters such as, layer thickness,

extruder temperature and print speed. Similarly, Khan-

zadeh et al. [34] presented a machine learning-based

porosity prediction scheme from the thermal history of

melt-pool for direct laser deposition. Frick [35] also dis-

cussed about how to avoid errors during desktop 3D

printing.

We consider three factors to study the machine er-

rors. They can be listed as machine vibration, material

deposition process, and 3D printer calibration. The 3D

printer under run condition may experience vibration

on its components that result in loss of the printing

path. This is a severe issue that affects the structural

geometry of the print object resulting in print quality

problem [36]. Another major factor to appear error in

the 3D printing process is during material deposition.

The air gap between the print head of the extruder and

the print bed must be in optimal distance. If the gap

is large it may result in loss of contact between each of

the layers, whereas the lower gap may cause deforma-

tions. Therefore, the proper calibration of 3D printer

components prior to the printing action is needed.

3.3 Post-printing phase

Traditional planar slicing requires support structures to

print overhangs and complex parts of the object [37].

After the completion of 3D printing process, support

structures need to be removed from the main part of the

object. However, the quality of the printed part is sig-

nificantly affected through the removal process. Zhao et
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al. [38] proposed a nonplanar slicing method for robotic

additive manufacturing. Their algorithm attempts to

print 3D object without using support structures which

results in improved quality of the printed part as com-

pared to objects printed with planar slicing algorithm.

Similarly, Ahlers et al. [39] used nonplanar slicing to

minimize discretization effects in additive manufactur-

ing process. Their work proposed a novel slicing algo-

rithm for FDM 3D printing that combines planar and

nonplanar layers, resulting in stronger and smoother

object surfaces and increased printing quality.

3.4 External disturbances

One major problem in 3D printing is the bending of

the printed part through cooling operation. Untimely

cooling system may lead the material to bend in one

direction that results in printed part quality issue [40].

An appropriate and timely cooling mechanism should

be supplied into the 3D printing process in the time

of material deposition. Thus, each of the printing layer

gets stick well with its successive layer and the strength

of the final product can be guaranteed layer by layer.

Another factor on the quality of the printed part is

the material properties of the filament. Metals, alloys,

polymers, composites, bio-materials, ceramics, and con-

crete are the main known materials to be used in 3D

printing. Thermoplastic polymers such as polyamide

(PA), acrylonitrile-butadiene-styrene copolymers (ABS),

polylactic acid (PLA) and polycarbonate (PC) are mainly

in the form of filaments for FDM 3D printing [41]. The

composite of polymers with fibers enhances the me-

chanical properties of the printed parts to be used as

functional components and load-bearings [42,43,44].

4 The proposed error compensation strategy

4.1 Modelling of FDM 3D printer and control system

design

The overall mathematical representation of an end-to-

end FDM 3D printer with the incorporation of feedback

system is shown in Fig. 3. It tries to give knowledge

about the use of closed-loop-based quality monitoring

in the domain of FDM 3D printing.

A feedback-based control system is designed for the

compensation of errors to enhance the print quality

in FDM 3D printer. The proposed error compensation

framework is shown in Fig. 4. It consists of a control

system, a model of 3D printer and an optimization al-

gorithm. The control system comprises of inner-loops

and an outer-loop, which represents the whole control

framework. There are three inner-loops having three

FIS control schemes, FIS-1, FIS-2, and FIS-3, respec-

tively. Those individual inner-loops control approaches

are dedicated to analyze the effects of error causing pa-

rameters in each phase of the 3D printing process. The

outer-loop, on the other hand, is used to compensate

the summed-up effects of errors by deploying another

FIS scheme in hope of fitting the actual model with the

target model.

We considered three conditions for analyzing the ef-

fects of errors on the print quality. The followings are

the representations of error causing parameters, which

can be evaluated in percentage. 1) During pre-printing

phase, denoted by P1, 2) during printing phase, denoted

by P2, and 3) during post-printing phase, denoted by

P3. Error (E) and Integral of Error (IE) are fed to

FIS, whereas the enlargement or reduction of the new

model is the output from FIS. This applies for all FIS

structures. Error is defined as the difference between

the target model and the actual model. Therefore, the

formation of the new model is a function of P1, P2, P3,

E and IE, and it is expressed as:
M1

∗

M2
∗

M3
∗

M∗

 =


f (P1, E1, IE1)

f (P2, E2, IE2)

f (P3, E3, IE3)

f (P1, P2, P3, E, IE)

 (1)

where M1
∗, M2

∗ and M3
∗ are the new model represen-

tations of the three inner-loops respectively, and M∗ is

the new model representation of the outer-loop.

The proposed Multi Input Single Output (MISO)

FIS takes “Error” and “Integral of Error” as inputs and

outputs the new model deformation factors as shown

in Fig. 5. A trial-and-error procedure is applied to de-

termine the range of fuzzy membership functions. A

Mamdani type fuzzy inference system [45] is used. The

FIS operations are as follows. ‘Min’ for ‘And’, ‘Min’

for ‘Implication’, ‘Max’ for ‘Aggregation’, ‘Centroid’ for

‘Defuzzification’ and triangular membership functions,

are used. The twenty-five IF...THEN structured fuzzy

rules are designed from the two linguistic input vari-

ables. Each has five linguistic values. Fig. 5 presents the

overall FIS structure that shows the interconnection of

each linguistic values to form a set of fuzzy rules.

Linear-fitting, which is a universal modelling tech-

nique involving less amount of calculation, results bet-

ter printing accuracy as compared with non-liniear-fitting

modelling technique [46]. Thus, we intend to use it to

represent the mapping between the new model and the

actual model in FDM 3D printer. It is mathematically

written as:

y = αx+ β (2)
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Fig. 3 The mathematical modelling of FDM 3D printer

where y is the actual model size and x is the new model

size. The two model sizes are the average value of the

three points of the data at different positions of each

side length. This kind of measurement is useful to con-

sider the printed object inaccuracies of size, shape and

printing position. The terms α and β are the two de-

formation factors. The aim is to find the best func-

tion matching between x and y. The new model versus

the actual model relationships for the three individual

inner-loops are expressed as:

y1 = α1x+ β1
y2 = α2x+ β2
y3 = α3x+ β3

(3)

Thus, the sum of the output of the three inner-loops

is fed to the outer-loop’s FIS to master control the error

compensation problem.

4.2 Optimization method

The GWO algorithm is applied to determine the op-

timal solutions for the three error causing parameters,

P1, P2, and P3. This algorithm is a meta-heuristic-based

optimization method with the inspiration of social hier-

archy of the grey wolves [25]. Grey wolves have a habit

of living, hunting, and eating together in their hierar-

chical order. The hierarchy’s top level is alpha (α) wolf

that monitors and leads the whole pack and decides

the time to walk, hunt, sleep, and so on. Whereas, the

hierarchy’s second level is beta (β) wolf that helps α-

wolf for decision making. The hierarchy’s lowest level

is omega (ω) wolf. The other category of wolf, on the

other hand, which is neither α-wolf, β-wolf, nor ω-wolf

is known as delta (δ) wolf. The grey wolves’ hunting

process comprises encircling and attacking.

The mathematical expression of encircling during

the hunting process is given as:

D = |C.XP (t)−X (t)| , C = 2.r1 (4)

X (t+ 1) = Xp (t)−A.D, A = 2m.r2 −m (5)

where D is the distance from the prey to the grey

wolves, XP and X are the position vectors of the prey

and the grey wolf, respectively, and t is the current iter-

ation. The terms r1 and r2 are the two random numbers

in the range [0, 1]. The term m is a decreasing vector

with components from 2 to 0. The knowledge of α, β,

and δ wolves’ position is used to compute the poten-

tial location of the prey. The wolves’ position updating

algorithm is governed as:

Dα = |C1.Xα −X|
Dβ = |C2.Xβ −X|
Dδ = |C3.Xδ −X|

(6)

X1 = Xα −A1.Dα

X2 = Xβ −A2.Dβ

X3 = Xδ −A3.Dδ

(7)

X (t+ 1) =
X1 + X2 + X3

3
(8)
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Fig. 4 The error compensation model

Fig. 5 The FIS structure

It is known that α, β, and δ wolves are the three best

search agents giving the first, the second, and the third

fittest solutions, respectively. However, since an extra

emphasis is not given yet for α solution, we introduce

an emphasis coefficient in the expression of the search

agent positions (Eq. (8)) to influence the other two best

solutions. Thus, Eq. (8) can be modified as:

X (t+ 1) =
ηX1 + X2 + X3

3
(9)

where the term η is an emphasis coefficient convention-

ally given in the interval [1, 2].

The GWO algorithm is clearly illustrated in Fig. 6.
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Fig. 6 The GWO algorithm

5 Results and Discussions

5.1 The results and discussions of the optimization

problem

This section discusses the simulation results of the opti-

mization algorithm that gives the optimal error causing

parameters in the three phases of the 3D printing pro-

cess (i.e., pre-printing, printing and post-printing). The

knowledge of the optimal error causing parameters is

useful to make decision which printing stage needs fur-

ther research for enhancing the print quality. For exam-

ple, if the possibility of the pre-printing error percent-

age is more than the other two printing phases, one

can decide to do research on a mechanism to reduce

the effect of errors associated in the pre-printing phase.

And the same scenario applies for the other two cases,

printing and post-printing phases.

The GWO algorithm is used to determine the opti-

mal error causing parameters. It applies the following

design specifications. The initial position of each wolf is

generated based on uniform random distribution. The

α-wolf’s emphasis coefficient is chosen as η = 1.2. Even

though it is very difficult to decide the maximum num-

ber of iterations and the maximum number of popula-

tions for population-based optimization problems [47],

we consider nine configuration trials as shown in Table

1. And we choose the one with the best fitness value.

Table 2 shows the fitness best solutions for all types of

configurations. The integral absolute error is chosen as

a standard objective function. It is denoted as a print

accuracy index (PAI), which is in fact a metric for our

optimization model, and it can be mathematically ex-

pressed as:

PAI =

t∫
0

|e (t)|dt (10)

where e (t) is the difference between the target model

and the actual model.

Our optimization problem is to state the objective

function with the possible constraints and solve for the

minimum to find the optimal error causing parameters.

It is stated as:

Min PAI =
t∫
0

|e (t)|dt

s.t.

0 ≤ P1 ≤ 1

0 ≤ P2 ≤ 1

0 ≤ P3 ≤ 1

(11)

where P1, P2 and P3 are the three error causing param-

eters during pre-printing, printing, and post-printing,

given in percentage, respectively. The ranges are in the

interval [0, 1].

Fig. 7 shows the convergence curve of Config-1, Config-

4 and Config-7. The total number of iterations are taken

as 50 for different number of wolves. Config-4 achieves

better fitness solution and higher convergence speed

as compared with the other two configurations. Simi-

larly, Fig. 8 presents the convergence curve of Config-2,

Config-5 and Config-8 for 75 number of iterations for

different number of wolves. From the three configura-

tions, Config-5 has better fitness value and higher con-

vergence speed. Config-3, Config-6 and Config-9 are op-

erated with 100 number of iterations for different num-

ber of wolves, which are shown in Fig. 9. The better
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Table 1 List of optimization trials

No. of wolves No. of iterations Optimal values, P1, P2, P3 Fitness best solutions Configuration notations
30 50 0.2877, 0.4854, 0.1979 1.8674 Config-1
30 75 0.5408, 0.1359, 0.2039 1.8531 Config-2
30 100 0.0493, 0.4137, 0.4012 1.7579 Config-3
60 50 0.2910, 0.1278, 0.5012 1.7424 Config-4
60 75 0.1314, 0.2903, 0.4843 1.7886 Config-5
60 100 0.3260, 0.1663, 0.0499 1.7211 Config-6
90 50 0.1335, 0.5337, 0.2904 1.7942 Config-7
90 75 0.1973, 0.1071, 0.1905 1.8377 Config-8
90 100 0.5310, 0.2841, 0.1271 1.7465 Config-9

Table 2 Fitness best solutions for all configuration types

Number of wolves Number of iterations
50 75 100

30 1.8674 1.8531 1.7579
60 1.7424 1.7886 1.7211
90 1.7942 1.8377 1.7465

Fig. 7 Convergence curves for Config-1, Config-4, and
Config-7

fitness value and higher convergence speed is observed

in Config-6 compared to the rest two configurations.

From the nine configuration trials, it is observed

that Config-6 that has 100 number of iterations and

60 wolves achieves the best fitness value and highest

convergence speed. The global minimum is observed in

the iteration interval [86, 100]. Therefore, Config-6 is se-

lected for our optimization problem. With this config-

uration, the optimal error causing parameters are eval-

uated as shown in Fig. 10. From the figure, the per-

centage values for the three parameters i.e., P1, P2 and

P3 are given as 32.6%, 16.63% and 4.99% respectively.

This means that the print quality of the 3D printing

system is affected by the errors associated in 32.6% dur-

ing pre-printing phase, 16.63% during printing phase,

4.99% during post-printing phase, and the rest is due to

external disturbances. The results give us information

to decide which phase of the 3D printing process need

further quality monitoring mechanism. In the present

Fig. 8 Convergence curves for Config-2, Config-5, and
Config-8

Fig. 9 Convergence curves for Config-3, Config-6, and
Config-9

scenario, it is observed that the errors associated in the

pre-printing phase have a higher probability to influ-

ence the print quality. Although more focus is neces-

sary in the pre-printing phase, it is recommended to in-

vestigate a general error compensation framework that

considers all the 3D printing phases. A feedback-based

fuzzy system is introduced to compensate the effects of

errors in the 3D printing process. The simulation re-
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Fig. 10 The error causing parameters; pre-printing, printing
and post-printing, given in percentage (%)

sults of the proposed error compensation mechanism

are presented next.

5.2 The closed-loop results analysis and discussions

This section discusses the simulation results of the pro-

posed error compensation mechanism. It presents a de-

tailed analysis of the results of the controlling perfor-

mance of FIS in both the inner-loops and the outer-

loop. Fig. 11 shows the three deformation factors of the

inner-loops. These deformation factors tell us about the

reduction or the enlargement of the print object. The

deformation factors of all the three inner-loops, i.e., α1,

α2 and α3 are computed by setting the range of β1, β2
and β3 in the interval [−0.01, 0.01]. Settings of the three

β ranges are based on conventions in hope of reduc-

ing deformation of the print object. The deformation

ranges are named as “reduced-large”, “reduced-small”,

“normal”, “enlarged-small” and “enlarged-high” whose

values in units are set as [0.4, 0.8], [0.8, 1.2], [1.2, 1.6],

and [1.6, 2], respectively. The error compensation sys-

tem simulation in Matlab is run for 10 seconds. From

Fig. 11, it is observed that after 1.7 seconds the first two

deformation factors are approaching to 1, whereas, the

third deformation factor is approaching to 1 after 5.5

seconds. All the three responses are in fact under “nor-

mal” deformation range. Fig. 12 shows the model errors

of the three inner-loops. It clears that the first two indi-

vidual errors are approaching to zero after 1.7 seconds,

whereas the third individual error is approaching to 1

after 5.5 seconds. Similarly, the deformation factor and

the model error of the outer-loop is presented in Fig. 13.

It shows that the model error is down to zero after 7

seconds and at the same time the deformation factor is

found in the interval [0.8, 1], which is under “normal”

range and acceptable value.

Fig. 11 The deformation factors for the inner-loops

Fig. 12 The model errors for the inner-loops

It is observed that the integration of fuzzy system

and GWO algorithm in the 3D printing process gives

a promising result by minimizing the effects of the er-
ror causing parameters, and hence it improves the print

quality. Thus, one can come with an idea that a closed-

loop-based quality monitoring approach is a viable so-

lution to guarantee the print quality in the 3D printing

process. Last, it can be said that considering all the pos-

sible error causing parameters and the nice modelling

of the 3D printing process results in a better control

performance. In fact, it is very difficult to explore all

the errors associated in the 3D printing process due to

a lot of design constraints. And also, removing all the

errors at the same time is not a simple task. It is rec-

ommended to consider the most influential errors in the

print quality and then to design the error compensation

framework.

6 Conclusion

Knowing the negative effects of printing errors in the

quality of the printed object, this paper proposes a
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Fig. 13 The deformation factor and the model error for the
outer-loop

feedback-based error compensation strategy that con-

siders the three phases of the 3D printing process: pre-

printing, printing, and post-printing. The objectives of

this paper are twofold. 1) To identify the type of errors

in every phase of FDM 3D printing. This means that

the errors in the three phases of the 3D printing pro-

cess are summarized. 2) To propose an end-to-end error

compensation strategy by designing a feedback-based

fuzzy inference system. The former is used to know the

performance of the 3D printing process in the presence

of the possible error causing parameters. The latter is

dedicated to determine the optimal error causing pa-

rameters by integrating FIS and GWO algorithm. The

knowledge of optimal error causing parameters is used

to give a decision about which phases of the 3D printing

process need further monitoring to enhance the print

quality. For example, if the print quality is possibly af-

fected due to the errors associated in the pre-printing

phase, one can decide to make an effort to minimize the

errors in this phase, and the same scenario applies for

the printing phase and the post-printing phase.

From the nine optimization configurations adopted,

Config-6 that has 60 wolves and 100 number of itera-

tions is selected due to its best fitness value and higher

convergence speed. The global minimum is found in

the iteration interval [86, 100]. The proposed feedback-

based fuzzy system has a promising result by generating

the deformation factors in a normal range within less

than 2 seconds for the inner-loops. An outer-loop gen-

erates the deformation factor within 7 seconds. Last, it

is observed that the paper demonstrated how a closed-

loop-based control system is used in 3D printing to min-

imize the effects of printing errors. However, all the re-

sults are simulation-based analysis. The results can be

further improved by refining the control and optimiza-

tion model. The next step is to do a real experimental

setups and investigate the performance of the proposed

error compensation approach in a real scenario.
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