1. He, J.; Tritt, T. M., Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357 (6358).
2. Shi, X. L.; Zou, J.; Chen, Z. G., Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem Rev 2020.
3. Zhao, K.; Qiu, P.; Shi, X.; Chen, L., Recent Advances in Liquid‐Like Thermoelectric Materials. Advanced Functional Materials 2019, 30 (8).
4. Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X., Compromise and Synergy in High-Efficiency Thermoelectric Materials. Adv Mater 2017, 29 (14).
5. Tan, G.; Zhao, L. D.; Kanatzidis, M. G., Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem Rev 2016.
6. Ren, G.-K.; Lan, J.-L.; Zhao, L.-D.; Liu, C.; Yuan, H.; Shi, Y.; Zhou, Z.; Lin, Y.-H., Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond. Materials Today 2019, 29, 68-85.
7. Koumoto, K.; Terasaki, I.; Funahashi, R., Complex oxide materials for potential thermoelectric applications. MRS bulletin 2006, 31 (3), 206-210.
8. Zhao, K.; Eikeland, E.; He, D.; Qiu, W.; Jin, Z.; Song, Q.; Wei, T.-r.; Qiu, P.; Liu, J.; He, J.; Iversen, B. B.; He, J.; Chen, L.; Shi, X., Thermoelectric materials with crystal-amorphicity duality induced by large atomic size mismatch. Joule 2021.
9. Shikano, M.; Funahashi, R., Electrical and thermal properties of single-crystalline (Ca 2 CoO 3) 0.7 CoO 2 with a Ca 3 Co 4 O 9 structure. Applied Physics Letters 2003, 82 (12), 1851-1853.
10. Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L., Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports. Journal of the American Chemical Society 2011, 133 (20), 7837-7846.
11. Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J., Copper ion liquid-like thermoelectrics. Nature Materials 2012, 11 (5), 422-425.
12. Hu, L.; Zhu, T.; Liu, X.; Zhao, X., Point defect engineering of high‐performance bismuth‐telluride‐based thermoelectric materials. Advanced Functional Materials 2014, 24 (33), 5211-5218.
13. Zhang, Z.; Zhao, K.; Wei, T.-R.; Qiu, P.; Chen, L.; Shi, X., Cu2Se-Based liquid-like thermoelectric materials: looking back and stepping forward. Energy & Environmental Science 2020, 13 (10), 3307-3329.
14. Jin, Z.; Xiong, Y.; Zhao, K.; Dong, H.; Ren, Q.; Huang, H.; Qiu, X.; Xiao, J.; Qiu, P.; Chen, L.; Shi, X., Abnormal thermal conduction in argyrodite-type Ag9FeS6-Te materials. Materials Today Physics 2021, 19.
15. Wu, Y.; Chen, Z.; Nan, P.; Xiong, F.; Lin, S.; Zhang, X.; Chen, Y.; Chen, L.; Ge, B.; Pei, Y., Lattice Strain Advances Thermoelectrics. Joule 2019, 3 (5), 1276-1288.
16. Meng, X.; Liu, Z.; Cui, B.; Qin, D.; Geng, H.; Cai, W.; Fu, L.; He, J.; Ren, Z.; Sui, J., Grain Boundary Engineering for Achieving High Thermoelectric Performance in n-Type Skutterudites. Advanced Energy Materials 2017, 1602582.
17. Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348 (6230), 109-114.
18. Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M., Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5 (2), 5510-5530.
19. Gayner, C.; Amouyal, Y., Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials. Advanced Functional Materials 2019, 30 (18).
20. Zhao, K.; Blichfeld, A. B.; Chen, H.; Song, Q.; Zhang, T.; Zhu, C.; Ren, D.; Hanus, R.; Qiu, P.; Iversen, B. B.; Xu, F.; Snyder, G. J.; Shi, X.; Chen, L., Enhanced Thermoelectric Performance through Tuning Bonding Energy in Cu2Se1–xSx Liquid-like Materials. Chemistry of Materials 2017, 29 (15), 6367-6377.
21. Hong, M.; Wang, Y.; Feng, T.; Sun, Q.; Xu, S.; Matsumura, S.; Pantelides, S. T.; Zou, J.; Chen, Z.-G., Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge1–x Sb x Te with Zn-Alloying-Induced Band Alignment. Journal of the American Chemical Society 2018, 141 (4), 1742-1748.
22. Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C., Weighted mobility. Advanced Materials 2020, 32 (25), 2001537.
23. Asadov, Y. G.; Rustamova, L. V.; Gasimov, G. B.; Jafarov, K. M.; Babajev, A. G., Structural phase transitions in Cu2–xTe crystals (x= 0.00, 0.10, 0.15, 0.20, 0.25). Phase Transitions 1992, 38 (4), 247-259.
24. He, Y.; Zhang, T.; Shi, X.; Wei, S.-H.; Chen, L., High thermoelectric performance in copper telluride. NPG Asia Materials 2015, 7 (8), e210.
25. Zhao, K.; Liu, K.; Yue, Z.; Wang, Y.; Song, Q.; Li, J.; Guan, M.; Xu, Q.; Qiu, P.; Zhu, H.; Chen, L.; Shi, X., Are Cu2 Te-Based Compounds Excellent Thermoelectric Materials? Adv Mater 2019, 31 (49), e1903480.
26. Mallick, M. M.; Vitta, S., Realizing high figure-of-merit in Cu2Te using a combination of doping, hierarchical structure, and simple processing. Journal of Applied Physics 2017, 122 (2), 024903.
27. Hussey‖, N.; Takenaka, K.; Takagi, H., Universality of the Mott–Ioffe–Regel limit in metals. Philosophical Magazine 2004, 84 (27), 2847-2864.
28. Gunnarsson, O.; Calandra, M.; Han, J., Colloquium: Saturation of electrical resistivity. Reviews of Modern Physics 2003, 75 (4), 1085.
29. He, Y.; Lu, P.; Shi, X.; Xu, F.; Zhang, T.; Snyder, G. J.; Uher, C.; Chen, L., Ultrahigh Thermoelectric Performance in Mosaic Crystals. Adv Mater 2015, 27 (24), 3639-44.
30. Ballikaya, S.; Chi, H.; Salvador, J. R.; Uher, C., Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. Journal of Materials Chemistry A 2013, 1 (40), 12478.
31. Qiu, Y.; Liu, Y.; Ye, J.; Li, J.; Lian, L., Synergistic optimization of carrier transport and thermal conductivity in Sn-doped Cu2Te. Journal of Materials Chemistry A 2018, 6 (39), 18928-18937.
32. Mukherjee, S.; Parasuraman, R.; Umarji, A. M.; Rogl, G.; Rogl, P.; Chattopadhyay, K., Effect of Fe alloying on the thermoelectric performance of Cu2Te. Journal of Alloys and Compounds 2020, 817, 152729.
33. Sarkar, S.; Sarswat, P. K.; Saini, S.; Mele, P.; Free, M. L., Synergistic effect of band convergence and carrier transport on enhancing the thermoelectric performance of Ga doped Cu 2 Te at medium temperatures. Scientific reports 2019, 9 (1), 1-15.
34. Wood, C.; Emin, D., Refractory materials for high-temperature thermoelectric energy conversion. MRS Online Proceedings Library (OPL) 1983, 24.
35. Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M. G., Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. Joule 2018, 2 (7), 1339-1355.
36. Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S., Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano letters 2008, 8 (12), 4670-4674.
37. Hao, F.; Qiu, P.; Tang, Y.; Bai, S.; Xing, T.; Chu, H.-S.; Zhang, Q.; Lu, P.; Zhang, T.; Ren, D.; Chen, J.; Shi, X.; Chen, L., High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9 (10), 3120-3127.
38. He, Y.; Day, T.; Zhang, T.; Liu, H.; Shi, X.; Chen, L.; Snyder, G. J., High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide. Advanced Materials 2014, 26 (23), 3974-3978.
39. Heep, B. K.; Weldert, K. S.; Krysiak, Y.; Day, T. W.; Zeier, W. G.; Kolb, U.; Snyder, G. J.; Tremel, W., High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6. Chemistry of Materials 2017, 29 (11), 4833-4839.
40. Jood, P.; Chetty, R.; Ohta, M., Structural stability enables high thermoelectric performance in room temperature Ag 2 Se. Journal of Materials Chemistry A 2020, 8 (26), 13024-13037.
41. Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Xia, X.; Liao, J.; Liu, R.; Huang, H.; Yang, J.; Bai, S.; Ren, D.; Shi, X.; Chen, L., Superior performance and high service stability for GeTe-based thermoelectric compounds. National Science Review 2019, 6 (5), 944-954.
42. Zhang, J.; Song, L.; Pedersen, S. H.; Yin, H.; Hung, L. T.; Iversen, B. B., Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat Commun 2017, 8, 13901.
43. Wei, T. R.; Tan, G.; Zhang, X.; Wu, C. F.; Li, J. F.; Dravid, V. P.; Snyder, G. J.; Kanatzidis, M. G., Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. J Am Chem Soc 2016, 138 (28), 8875-82.
44. Tan, Q.; Zhao, L.-D.; Li, J.-F.; Wu, C.-F.; Wei, T.-R.; Xing, Z.-B.; Kanatzidis, M. G., Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A 2014, 2 (41), 17302-17306.
45. Kunpeng Zhao, F. X., Xun Shi, Jian He, and Lidong Chen, Novel meta-phase beyond classic Hume-Rothery rules. submitted 2021.
46. Zhao, K.; Zhu, C.; Qiu, P.; Blichfeld, A. B.; Eikeland, E.; Ren, D.; Iversen, B. B.; Xu, F.; Shi, X.; Chen, L., High thermoelectric performance and low thermal conductivity in Cu2−yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy 2017, 42, 43-50.
47. Yao, Y.; Zhang, B. P.; Pei, J.; Sun, Q.; Nie, G.; Zhang, W. Z.; Zhuo, Z. T.; Zhou, W., High Thermoelectric Figure of Merit Achieved in Cu2S1- xTe x Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering. ACS applied materials & interfaces 2018, 10 (38), 32201-32211.
48. Zhu, T.; Hu, L.; Zhao, X.; He, J., New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science 2016, 3 (7), 1600004.
49. Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N. K.; Soni, A.; He, J.; Waghmare, U. V.; Biswas, K., Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371 (6530), 722-727.
50. Anderson, P. W., Absence of diffusion in certain random lattices. Physical review 1958, 109 (5), 1492.
51. Abrahams, E.; Anderson, P.; Licciardello, D.; Ramakrishnan, T., Scaling theory of localization: Absence of quantum diffusion in two dimensions. Physical Review Letters 1979, 42 (10), 673.
52. Mott, N. F.; Davis, E. A., Electronic processes in non-crystalline materials. OUP Oxford: 2012.
53. Yamamoto, K.; Aharony, A.; Entin-Wohlman, O.; Hatano, N., Thermoelectricity near Anderson localization transitions. Physical Review B 2017, 96 (15), 155201.
54. Hong, M.; Chen, Z. G.; Yang, L.; Zou, Y. C.; Dargusch, M. S.; Wang, H.; Zou, J., Realizing zT of 2.3 in Ge1-x-y Sbx Iny Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping. Adv Mater 2018, 30 (11).
55. Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473 (7345), 66-9.
56. Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C., Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. Phys Rev Lett 2012, 108 (16), 166601.
57. Goldsmid, H. J., Introduction to thermoelectricity. Springer: 2010; Vol. 121.
58. Zhang, J.; Liu, R.; Cheng, N.; Zhang, Y.; Yang, J.; Uher, C.; Shi, X.; Chen, L.; Zhang, W., High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv Mater 2014, 26 (23), 3848-53.
59. Liu, H.; Yuan, X.; Lu, P.; Shi, X.; Xu, F.; He, Y.; Tang, Y.; Bai, S.; Zhang, W.; Chen, L.; Lin, Y.; Shi, L.; Lin, H.; Gao, X.; Zhang, X.; Chi, H.; Uher, C., Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1-xIx. Advanced Materials 2013, 25 (45), 6607-6612.
60. Enderby, J.; Barnes, A., Electron transport at the Anderson transition. Physical Review B 1994, 49 (7), 5062.
61. Würger, A., Thermoelectric ratchet effect for charge carriers with hopping dynamics. Physical Review Letters 2021, 126 (6), 068001.
62. Mooij, J., Electrical conduction in concentrated disordered transition metal alloys. physica status solidi (a) 1973, 17 (2), 521-530.
63. Imry, Y., Possible role of incipient Anderson localization in the resistivities of highly disordered metals. Physical Review Letters 1980, 44 (7), 469.
64. Qian, X.; Zhou, J.; Chen, G., Phonon-engineered extreme thermal conductivity materials. Nature Materials 2021, 1-15.
65. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
66. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical review B 1976, 13 (12), 5188.