1 Bouchard, C. et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985) 87, 1003-1008 (1999).
2 Bouchard, C. & Rankinen, T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 33, S446-451; discussion S452-443 (2001).
3 Mittleman, M. A. et al. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med 329, 1677-1683, doi:10.1056/NEJM199312023292301 (1993).
4 Willich, S. N. et al. Physical exertion as a trigger of acute myocardial infarction. Triggers and Mechanisms of Myocardial Infarction Study Group. N Engl J Med 329, 1684-1690, doi:10.1056/NEJM199312023292302 (1993).
5 Maron, B. J. The paradox of exercise. N Engl J Med 343, 1409-1411, doi:10.1056/NEJM200011093431911 (2000).
6 Franklin, B. A. et al. Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective-An Update: A Scientific Statement From the American Heart Association. Circulation 141, e705-e736, doi:10.1161/CIR.0000000000000749 (2020).
7 Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat Genet 47, 856-860, doi:10.1038/ng.3314 (2015).
8 Komi, P. V. et al. Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 100, 385-392 (1977).
9 Simoneau, J. A. & Bouchard, C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9, 1091-1095 (1995).
10 Costill, D. L., Fink, W. J. & Pollock, M. L. Muscle fiber composition and enzyme activities of elite distance runners. Med Sci Sports 8, 96-100 (1976).
11 Harber, M. & Trappe, S. Single muscle fiber contractile properties of young competitive distance runners. J Appl Physiol (1985) 105, 629-636, doi:10.1152/japplphysiol.00995.2007 (2008).
12 Widrick, J. J., Trappe, S. W., Costill, D. L. & Fitts, R. H. Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. Am J Physiol 271, C676-683, doi:10.1152/ajpcell.1996.271.2.C676 (1996).
13 Saltin, B., Henriksson, J., Nygaard, E., Andersen, P. & Jansson, E. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci 301, 3-29 (1977).
14 Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 11, 470, doi:10.1038/s41467-019-13869-w (2020).
15 Rosenbloom, K. R. et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41, D56-63, doi:10.1093/nar/gks1172 (2013).
16 Sakane, A. et al. Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3. Proc Natl Acad Sci U S A 103, 10029-10034, doi:10.1073/pnas.0600304103 (2006).
17 Nagano, F. et al. Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein. J Biol Chem 273, 24781-24785 (1998).
18 Knop, M., Aareskjold, E., Bode, G. & Gerke, V. Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO J 23, 2982-2992, doi:10.1038/sj.emboj.7600319 (2004).
19 Zografou, S. et al. A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J Cell Sci 125, 4780-4790, doi:10.1242/jcs.104174 (2012).
20 McCormack, J. J., Lopes da Silva, M., Ferraro, F., Patella, F. & Cutler, D. F. Weibel-Palade bodies at a glance. J Cell Sci 130, 3611-3617, doi:10.1242/jcs.208033 (2017).
21 Sapp, R. M. et al. The effects of moderate and high-intensity exercise on circulating markers of endothelial integrity and activation in young, healthy men. J Appl Physiol (1985) 127, 1245-1256, doi:10.1152/japplphysiol.00477.2019 (2019).
22 van Loon, J. E., Sonneveld, M. A., Praet, S. F., de Maat, M. P. & Leebeek, F. W. Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise. PLoS One 9, e91687, doi:10.1371/journal.pone.0091687 (2014).
23 Gill, J. C., Endres-Brooks, J., Bauer, P. J., Marks, W. J. & Montgomery, R. R. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 69, 1691-1695 (1987).
24 Sabater-Lleal, M. et al. Genome-Wide Association Transethnic Meta-Analyses Identifies Novel Associations Regulating Coagulation Factor VIII and von Willebrand Factor Plasma Levels. Circulation 139, 620-635, doi:10.1161/CIRCULATIONAHA.118.034532 (2019).
25 Abdel-Hamid, M. S. et al. Micro and Martsolf syndromes in 34 new patients: Refining the phenotypic spectrum and further molecular insights. Clin Genet 98, 445-456, doi:10.1111/cge.13825 (2020).
26 Chen, J. & Chung, D. W. Inflammation, von Willebrand factor, and ADAMTS13. Blood 132, 141-147, doi:10.1182/blood-2018-02-769000 (2018).
27 Rietveld, I. M. et al. High levels of coagulation factors and venous thrombosis risk: strongest association for factor VIII and von Willebrand factor. J Thromb Haemost 17, 99-109, doi:10.1111/jth.14343 (2019).
28 Miyamoto-Mikami, E. et al. Gene expression profile of muscle adaptation to high-intensity intermittent exercise training in young men. Sci Rep 8, 16811, doi:10.1038/s41598-018-35115-x (2018).
29 Hedstrand, H. A study of middle-aged men with particular reference to risk factors for cardiovascular disease. Ups J Med Sci Suppl 19, 1-61 (1975).
30 Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267-273 (2003).
31 Elgzyri, T. et al. First-Degree Relatives of Type 2 Diabetic Patients Have Reduced Expression of Genes Involved in Fatty Acid Metabolism in Skeletal Muscle. Journal of Clinical Endocrinology & Metabolism 97, E1332-E1337, doi:10.1210/jc.2011-3037 (2012).
32 Ekman, C. et al. Less pronounced response to exercise in healthy relatives to type 2 diabetic subjects compared with controls. Journal of Applied Physiology 119, 953-960, doi:10.1152/japplphysiol.01067.2014 (2015).
33 Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med 4, 381-394, doi:10.2165/00007256-198704060-00001 (1987).
34 McGawley, K. et al. No Additional Benefits of Block- Over Evenly-Distributed High-Intensity Interval Training within a Polarized Microcycle. Front Physiol 8, 413, doi:10.3389/fphys.2017.00413 (2017).
35 Rankinen, T. et al. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS One 11, e0147330, doi:10.1371/journal.pone.0147330 (2016).
36 Qu, Z., Andersen, J. L. & Zhou, S. Visualisation of capillaries in human skeletal muscle. Histochem Cell Biol 107, 169-174 (1997).
37 Brooke, M. H. & Kaiser, K. K. Three "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18, 670-672 (1970).
38 Keildson, S. et al. Expression of Phosphofructokinase in Skeletal Muscle Is Influenced by Genetic Variation and Associated With Insulin Sensitivity. Diabetes 63, 1154-1165 (2014).
39 Delaneau, O. & Zagury, J. F. Haplotype inference. Methods Mol Biol 888, 177-196, doi:10.1007/978-1-61779-870-2_11 (2012).
40 Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5, e1000529, doi:10.1371/journal.pgen.1000529 (2009).
41 Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39, 906-913, doi:10.1038/ng2088 (2007).
42 Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288, doi:10.1186/1471-2105-11-288 (2010).
43 Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. 2010 36, 48, doi:10.18637/jss.v036.i03 (2010).
44 Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336-2337, doi:10.1093/bioinformatics/btq419 (2010).
45 Scott, R. A. et al. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc 42, 107-112, doi:10.1249/MSS.0b013e3181ae2bc0 (2010).
46 Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353-1358, doi:10.1093/bioinformatics/bts163 (2012).
47 Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034 (2002).
48 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14, 417-419, doi:10.1038/nmeth.4197 (2017).
49 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
50 Brown, R. M., Meah, C. J., Heath, V. L., Styles, I. B. & Bicknell, R. Tube-Forming Assays. Methods Mol Biol 1430, 149-157, doi:10.1007/978-1-4939-3628-1_9 (2016).
51 Nowak-Sliwinska, P. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21, 425-532, doi:10.1007/s10456-018-9613-x (2018).