1. He, J. & Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 357, eaak9997 (2017).
2. Han, C. G., Qian, X., Li, Q., Deng, B., Zhu, Y., Han, Z., Zhang, W., Wang, W., Feng, S.P., Chen, G. & Liu, W. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091-1098 (2020).
3. Wang, H. & Yu, C. Organic thermoelectrics: Materials preparation, performance optimization, and device integration. Joule 3, 53-80 (2019).
4. Tan, G., Zhao, L.-D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123-12149 (2016).
5. Wang, X., Huang, Y. T., Liu, C., Mu, K., Li, K. H., Wang, S., Yang, Y., Wang, L., Su, C. H. & Feng, S. P. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 10, 4151 (2019).
6. Chen, D., Li, Z., Jiang, J., Wu, J., Shu, N. & Zhang, X. Influence of electrolyte ions on rechargeable supercapacitor for high value-added conversion of low-grade waste heat. J. Power Sources 465, 228263 (2020).
7. Kim, B., Hwang, J. U. & Kim, E. Chloride transport in conductive polymer films for an n-type thermoelectric platform. Energy Environ. Sci. 13, 859-867 (2020).
8. Yang, P., Liu, K., Chen, Q., Mo, X., Zhou, Y., Li, S., Feng, G. & Zhou, J. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew. Chem. Int. Ed. 55, 12050-12053 (2016).
9. Yu, B., Duan, J., Cong, H., Xie, W., Liu, R., Zhuang, X., Wang, H., Qi, B., Xu, M., Wang, Z. L. & Zhou, J. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 370, 342-346 (2020).
10. Poletayev, A. D., McKay, I. S., Chueh, W. C. & Majumdar, A. Continuous electrochemical heat engines. Energy Environ. Sci. 11, 2964-2971 (2018).
11. Blanc, L. E., Kundu, D. & Nazar, L.F. Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771-799 (2020).
12. Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F. & Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49, 4203-4219 (2020).
13. Jia, X., Liu, C., Neale, Z. G., Yang, J. & Cao, G. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795-7866 (2020).
14. Zhang, Y., Wan, F., Huang, S., Wang, S., Niu, Z. & Chen, J. A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020).
15. Meng, Y., Liu, P., Zhou, W., Ding, J. & Liu, J. Bioorthogonal DNA adsorption on polydopamine nanoparticles mediated by metal coordination for highly robust sensing in serum and living cells. ACS Nano 12, 9070-9080 (2018).
16. Li, Z., Ren, Y., Mo, L., Liu, C., Hsu, K., Ding, Y., Zhang, X., Li, X., Hu, L. & Ji, D. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14, 5581-5589 (2020).
17. Li, R. & Liu, C.-Y. VO2 (B) nanospheres: Hydrothermal synthesis and electrochemical properties. Mater. Res. Bull. 45, 688-692 (2010).
18. Chen, L., Ruan, Y., Zhang, G., Wei, Q., Jiang, Y., Xiong, T., He, P., Yang, W., Yan, M., An, Q. & Mai, L. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem. Mater. 31, 699-706 (2019).
19. Luo, H., Wang, B., Wang, C., Wu, F., Jin, F., Cong, B., Ning, Y., Zhou, Y., Wang, D. & Liu, H. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 33, 390-398 (2020).
20. Wang, H., Zhu, Y., Kim, S. C., Pei, A., Li, Y., Boyle, D. T., Wang, H., Zhang, Z., Ye, Y. & Huang, W. Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. P. Natl. Acad. Sci. 117, 29453-29461 (2020).
21. Duan, J., Yu, B., Liu, K., Li, J., Yang, P., Xie, W., Xue, G., Liu, R., Wang, H. & Zhou, J. PN conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 57, 473-479 (2019).
22. Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959-1965 (2014).
23. Oh, J. Y., Lee, J. H., Han, S. W., Chae, S. S., Bae, E. J., Kang, Y. H., Choi, W. J., Cho, S. Y., Lee, J.-O. & Baik, H. K. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9, 1696-1705 (2016).
24. Kim, C. S., Lee, G. S., Choi, H., Kim, Y. J., Yang, H. M., Lim, S. H., Lee, S.-G. & Cho, B. J. Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy 214, 131-138 (2018).
25. Ding, J., Du, Z., Gu, L., Li, B., Wang, L., Wang, S., Gong, Y. & Yang, S. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater. 30, 1800762 (2018).
26. Ding, J., Du, Z., Li, B., Wang, L., Wang, S., Gong, Y. & Yang, S. Unlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv. Mater. 31, 1904369 (2019).
27. Chen, L., Yang, Z. & Huang, Y. Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale 11, 13032-13039 (2019)..
28. Zhao, J., Ren, H., Liang, Q., Yuan, D., Xi, S., Wu, C., Manalastas, W., Ma, J., Fang, W., Zheng, Y., et al. High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 62, 94-102 (2019)..
29. Liu, Y.-Y., Lv, T.-T., Wang, H., Guo, X.-T., Liu, C.-S. & Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-ion batteries. Chem. Eng. J. 417, 128408 (2021).
30. Deka Boruah, B., Mathieson, A., Park, S.K., Zhang, X., Wen, B., Tan, L., Boies, A. & De Volder, M. Vanadium dioxide cathodes for high‐rate photo‐rechargeable zinc‐ion batteries. Adv. Energy Mater. 11, 2100115 (2021).
31. Luo, H., Wang, B., Wu, F., Jian, J., Yang, K., Jin, F., Cong, B., Ning, Y., Zhou, Y., Wang, D., et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy 81, 105601 (2021).
32. Wang, L., Huang, K.-W., Chen, J. & Zheng, J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 5, eaax4279 (2019).
33. Liu, C., Neale, Z., Zheng, J., Jia, X., Huang, J., Yan, M., Tian, M., Wang, M., Yang, J. & Cao, G. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273-2285 (2019).
34. Liao, M., Wang, J., Ye, L., Sun, H., Wen, Y., Wang, C., Sun, X., Wang, B. & Peng, H. A deep-cycle aqueous zinc-ion battery containingan oxygen-deficient vanadium oxide cathode. Angew. Chem. Int. Ed. 132, 2293-2298 (2020).
35. Li, Z., Wu, L., Dong, S., Xu, T., Li, S., An, Y., Jiang, J. & Zhang, X. Pencil drawing stable interface for reversible and durable aqueous zinc‐ion batteries. Adv. Funct. Mater 31, 2006495 (2020).
36. Li, Z., Chen, D., An, Y., Chen, C., Wu, L., Chen, Z., Sun, Y. & Zhang, X. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 28, 307-314 (2020).
37. Huang, J., Wang, Z., Hou, M., Dong, X., Liu, Y., Wang, Y. & Xia, Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 1-8 (2018).