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Abstract The Internet of Things (IoT) is a new paradigm for connecting various heterogeneous networks.cognitive

radio (CR) adopts cooperative spectrum sensing (CSS) to realize the secondary utilization of idle spectrum by

unauthorized IoT devices,so that IoT objects can effectively use spectrum resources.However, the abnormal IoT

devices in the cognitive Internet of Things will disrupt the CSS process. For this attack, we propose a spectrum

sensing strategy based on the weighted combining of the Hidden Markov Model. In this method, Hidden Markov

Model is used to detect the probability of malicious attack of each node and report it to the fusion center (FC). FC

allocates a reasonable weight value according to the evaluation of the submitted observation results to improve the

accuracy of the sensing results.Simulation results show that the detection performance of spectrum sensing data

forgery(SSDF) attack in cognitive Internet of Things is better than that of K rank criterion in hard combining.

Keywords Internet of Things · Cognitive Internet of Things · Cognitive radio · Hidden Markov Model · SSDF

1 Introduction

The IoT can be defined as a network composed of in-

terconnected objects and people who provide services.

They share data to complete tasks in various applica-

tions [1].The IoT realizes the interconnection between

various devices, including computers, sensors, house-

hold appliances, phones, personal devices, business de-

vices, and any device that can connect to the network

and communicate with other devices.With the develop-
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ment of technology and the increase in market demand,

the number of IoT connected devices has achieved ex-

plosive growth. It is expected that sensors will be at-

tached to all objects around us in the future.In order to

manage a large number of devices in the IoT, context-

aware methods are used to analyze the incoming data

from sensors, and context-awareness plays a key role

in data processing [2].However, the context-awareness

method in the IoT only processes the incoming data, re-

duces unnecessary data entering the network, and does

not really solve the network congestion problem caused

by a large number of devices in the IoT.At present,

our IoT devices have a high usage rate in unlicensed

frequency bands, but the licensed frequency bands are

not fully utilized. Therefore, the static allocation and

management of spectrum resources cannot effectively

meet the needs of these IoT devices and application-

s.The dynamic spectrum allocation method in cogni-

tive radio can effectively overcome the shortcomings

of the traditional static spectrum allocation method

and alleviate the current situation of spectrum resource

shortage[3, 4]. Through collaborative spectrum sharing,

unlicensed IoT devices can access the licensed spectrum

band without interfering with the primary user (PU),
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which effectively improves the spectrum utilization of

the IoT network [5].

Literature [6] proposed a new concept of cognitive

Internet of Things (CIoT). CIoT is an IoT with cog-

nitive and cooperative mechanisms. Integrating these

mechanisms can improve performance and complete in-

telligent services. CIoT gives the current high-level in-

telligent ”brain” of the current IoT, thinking and un-

derstanding the material and social world, so that it

can analyze the current network conditions that it per-

ceives, and make intelligent decisions to maximize net-

work performance [7].While proposing the concept of

the cognitive Internet of Things, a CIoT architecture

was developed, combining the scalability of IoT with

cognitive computing tools, and integrating knowledge

models and self-learning information into the platfor-

m. The proposed architecture solves the problem of the

lack of large-scale applications of CIoT [8].On this basis,

we combine cognitive radio with the IoT based on the

cognitive function of the IoT, and use CRN to estab-

lish an IoT intelligent network to solve the problem of

scarcity of the IoT spectrum.The CR technology merges

with the IoT and is called the cognitive radio Internet

of Things (CRIoT) [9]. The combination of cognitive

radio and the IoT enables IoT devices to perceive the

spectrum resources that are not fully utilized by the

primary user.

The first consideration in integrating CR technolo-

gy into the IoT is the security issues in the IoT. The

heterogeneity and complexity of the IoT make it more

difficult to deal with the security of the IoT[10].There

is usually a three-tier architecture in the IoT, and we

implement different security principles in each layer to
ensure the security of the IoT.Only by solving the se-

curity issues related to it, can the future of the IoT

framework be ensured [11].In the IoT, threats such as

sensitive information leakage, denial of service attacks,

and unauthorized network access are all attack methods

that undermine the security of the IoT [12].These com-

mon attacks have been studied. Zhen Li, Tao Jing and

others used physical layer methods to solve the securi-

ty problems in CIoT networks based on dynamic spec-

trum allocation, and proposed the use of cooperative

interference to achieve secure transmission [13].Pin-Yu

Chen et al. adopted a security availability and quality-

aware channel allocation method for channel allocation

under interference attacks in IoT-based cognitive ra-

dio networks with time-sensitive services [14].Xiaofan

He et al. proposed a synchronous Q learning algorithm

based on wideband spectrum sensing and greedy strat-

egy to actively avoid channel interference [15].Khaled

Mohammed Saifuddin et al. proposed a fusion-based

defense mechanism for the damage caused by intention-

al attacks on the IoT infrastructure under the complex

network structure, and introduced a game method be-

tween the opponent and the defender, using the game

equilibrium the results to evaluate the effectiveness of

defense mechanism [16].

Although the security of the IoT has been extensive-

ly discussed and resolved, some problems in the secu-

rity of spectrum sensing still need further research.One

of the main requirements of CRIoT security is to en-

sure that the PU is not interfered by cognitive user-

s and can obtain data at any time.In CRIoT, due to

the path shadow and fading in the spectrum sensing

process, the local spectrum sensing performed by a sin-

gle IoT device is usually inaccurate.Compared with the

traditional single-node spectrum sensing method, CSS

can reduce the influence of channel fading and shad-

ow on the accuracy of data fusion to a certain extent.

After the IoT device senses the data, it can make the

judgment whether the PU occupies the current frequen-

cy band by itself and also can share information with

other IoT devices to complete the judgment together

or FC collects the perception data of each IoT device

and uses certain data fusion rules to complete the final

decision.However, the CSS mechanism provides an op-

portunity for malicious IoT Devices (MIDs) to launch

attacks. primary user emulation(PUE) attacks and SS-

DF attacks are two common types of attacks. PUE at-

tacks are mainly MIDs by acquiring PU-related charac-

teristics and disguising them as PU, destroying the sys-

tem environment [17].SSDF attack is also called Byzan-

tine attack. This attack is MIDs tampering with local

sensing data and affecting FC’s final decision [18].There

are two main purposes for MIDs to launch Byzantine
attacks. One is to monopolize the entire channel and

maximize benefits. When the PU does not occupy the

authorized spectrum, the MIDs will signal the PU occu-

pancy of the authorized spectrum to other IoT devices,

so that other devices cannot intervene in the authorized

spectrum. The second is to interfere with the transmis-

sion of the PU and destroy the performance of the entire

network. When the PU occupies the authorized spec-

trum, MIDs signal that the authorized spectrum is idle

to other IoT devices, causing a large number of devices

to intervene in the authorized spectrum, leading to sys-

tem chaos. Therefore, in either case, the damage to the

normal operation of the network is serious.

On this basis, we propose a weighted combining at-

tack detection method based on Hidden Markov Mod-

el. This method can use the channel state sensed by

previous IoT devices as a data set to calculate normal

IoT devices (NIDs) and probabilistic models of various

attackers, and the FC evaluates the submitted observa-
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tion results and assigns reasonable weight values, and

finally makes a global decision.

The following are the major contributions of this

paper:

• This article describes a method for discovering and

detecting malicious IoT devices in the cognitive IoT.

• Proposed a weighted combining scheme based on Hid-

den Markov Model to discover malicious attack devices

in CRIoT, so that the final decision made by FC has

high accuracy.

• Use Hidden Markov Model to determine the size of the

weight, and it has a higher detection rate when there

are more malicious devices.

• The weighted combining scheme greatly reduces the

inaccuracy of a single node’s perception.

• The improvement of the detection rate of MIDs im-

proves the overall spectrum utilization efficiency.

Rest of the paper is organized as follows: Section

2 introduces related work. Section 3 describes the sys-

tem model. Section 4 describes the model of resisting

SSDF attacks based on the hidden Markov model. In

Section 5, experimental simulations are carried out and

the results are analyzed. Section 6 concludes the paper.

2 Related works

At present, a lot of research work has been done on SS-

DF attack. The common ways of SSDF attack are collu-

sive attack and independent attack. In collusive attacks,

malicious users conspire together to attack and degrade

CSS performance[19]. For collusive attacks, Fan Jin et

al. proposed a detection strategy based on Eclat algo-

rithm to detect collusive malicious nodes [20] . Such-

mita Bhattacharjee et al. studied the design of collu-

sive nodes in cooperative spectrum sensing and found

that the performance degradation of collusive attack-

s is more severe than that of independent attacks[21].

Jingyu Feng et al. propose a two-level defense called

FeedGuard to defend against such attacks, which can

be used to improve cognitive trust assessments and re-

duce the perceived trust of CFF attackers[22].

In the independent attack, the malicious user will

launch the attack independently without collusion with

other users, this kind of attack is quite common, this pa-

per studies the independent attack in the SSDF attack.

At present, many schemes based on reputation mecha-

nism are used to detect independent attacks. Tao Qin

and his colleagues propose a trust-aware hybrid spec-

trum sensing scheme, which can detect the behavior of

secondary users and filter their reported spectrum sens-

ing results from the decision-making process[23]. Fang

Ye and others put forward a comprehensive reputation-

based security mechanism. According to SU’s current

and historical perception behavior, the reliability of SU

in cooperative perception is measured by comprehen-

sive reputation value, and a penalty strategy is pro-

posed to modify reputation[24].Ming Zhou and others

proposed a cooperative spectrum sensing scheme based

on CRN Bayesian Reputation Model. The key idea is

to treat cooperation as a service evaluation process,

and SU’s reputation reflects their quality of service[25].

M. Yul. Morozov et al. used combinatorial method-

s to mitigate the SSDF attacks, first using a reputa-

tion method to isolate the initially untrusted nodes,

and then using a special q-out-of-m fusion rule to miti-

gate the residual attacks[26]. In addition to reputation-

based schemes, a number of other algorithms have been

incorporated into some countermeasures against SSD-

F attacks. Muhammad Sajjad Khan et al proposed a

soft decision fusion scheme based on genetic algorith-

m to determine the optimal coefficient vector of mul-

tiple secondary user sensor reports[27]. Wangjam Ni-

ranjan Singh et al. proposed a distance-based outlier

detection method to detect and isolate such malicious

users on FC[28]. Zhixu Cheng et al have studied the de-

tection of interactive M-ary quantization data against

SSDF attacks in CSS networks, and proposed an in-

teractive detection algorithm[29]. Amrapali Shivajirao

Chavan et al. designed a situational awareness frame-

work for distributed systems and mobile cognitive ra-

dio ad hoc networks to help prevent persistent SSDF

attack [30]. Based on the Markov model, Xiaofan He

et al have developed a new malicious user detection

method using two proposed conditional frequency check

statistics to improve the cooperative spectrum sensing

performance [31]. Roshni Rajkumari et al proposed a

method to detect SSDF attacks based on dissimilari-

ty scores. SU calculates the dissimilarity scores of his

neighbors based on the messages he receives from his

h-hop neighbors[32]. Zeng Kun et al. proposed a simple

robust secure cooperative SS scheme to counter SSDF

attacks in the case of hard decision combination. In this

approach, only binary decisions from the report OSA n-

ode are required to significantly reduce the overhead of

the control channel[33]. In order to resist SSDF attack-

s, Yuanhua Fu, Zhiming He and others proposed a low

complexity confidence weighted CSS scheme based on

entropy, the scheme evaluates the weight of each sen-

sor node according to the inconsistent characteristics of

the data received by the FC in two continuous sensing

slots[34]. Ye Fang and others proposed an algorithm

based on evidence theory and fuzzy entropy to resist

the attack of SSDF. In this algorithm, the membership

function and the basic probability distribution function
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are obtained for the secondary users based on the local

energy detection results. According to the distance of

evidence and the classical conflict coefficient, the new

conflict coefficient is calculated, and the conflict weight

of evidence is obtained. The fuzzy weight is calculat-

ed by fuzzy entropy, and the weight of credibility is

obtained by updating credibility [35]. Our scheme also

uses a weighted fusion approach, the difference is that

we use Hidden Markov Model to determine the weight

of nodes. Changlong Chen, Min Song et al used a decen-

tralized scheme to detect malicious users in cooperative

spectrum sensing, and used the spatial correlation of

received signal intensity between closely adjacent sec-

ondary users, and based on Robustness’s outlier detec-

tion technique[36].

Machine learning methods such as SVM, neural net-

work, Naive Bayes and Ensemble classifier are also wide-

ly used to detect SSDF attacks in CRN[37]. Sarmah R

et al developed a sliding window trust model based on

Bayesian inference to identify and eliminate indepen-

dent cooperative SSDF attackers[38]. Muhammad Saj-

jad Khan and others proposed a support vector machine

machine learning algorithm to classify normal users and

malicious users in the network [39].

However, the above work does not solve the situa-

tion where there are many malicious devices in the cog-

nitive Internet of Things. The weight value obtained by

our proposed method using the Hidden Markov Model

is more accurate and can well find a large number of

malicious attacks in CRIoT. Equipment, the final deci-

sion made by FC has a high accuracy rate.

3 System Model

3.1 Spectrum-aware model

CRIoT is divided into four levels, namely the applica-

tion layer, the transmission layer, the perception layer,

and the sensing layer. The upper three layers constitute

a basic IoT architecture. Combined with CR technol-

ogy, a sensing layer is added to the three-layer archi-

tecture of the IoT, and the sensing layer provides an

empty spectrum bandwidth for data transmission [40].

The focus of this paper is to solve the security problem

of spectrum sensing in the sensing layer. In the coopera-

tive spectrum sensing scenario, the CRIoT is composed

of PU, FC, and N IoT devices. Among all IoT devices,

there are MIDs, and the number is M. In the process of

spectrum sensing, the number of NIDs is N-M. It senses

the usage status of a specific spectrum channel in the

sensing time slot, and sends the sensing report to the

FC faithfully. The FC makes a global decision on the

channel status based on all received reports, and then

sends the decision result to the IoT device. And MIDs

will choose to forge the perceived data, affecting FC to

make incorrect decisions. The signal received by one of

the IoT devices can be expressed as follows

Yi[k] =

{
Zi[k] H0

hiS[k] + Zi[k] H1
, i = 1, 2, ..., N (1)

The kth sensing time slot, the signal received by the

ith IoT device is Yi[k], the PU signal is S[k], Zi[k] is the

additive white Gaussian noise of the ith IoT device, and

Zi[k] and S[k] are independent of each other.hi is the

channel gain of the communication between the ith IoT

device and the PU. H0 is the current frequency band is

free, and H1 is the current frequency band is occupied

[41].

The test statistic Ti of L samples of the ith sensor

node can be given by

Ti =

L∑
t=1

|yi(t)|2 (2)

The local perception result G[i] made by each sensor

node can be expressed as

G[i] =

{
0, if Ti > λ

1, if Ti ≤ λ
(3)

λ is the threshold of each sensor node.

After obtaining the perception results of all N IoT

devices, FC will use a certain integration strategy to

make a global decision. If FC finds the result of PU

existence, one of the IoT devices may start to trans-

mit data on this channel. When the FC finds that the

PU does not exist, the IoT device continues to perceive

whether the next channel is occupied.

3.2 SSDF attack model

In Figure1, the sensing layer of CIoT may be subject

to malicious attacks from different IoT devices. These

MIDs may tamper with local sensing results, affect FC’s

global decision making, cause conflicts in the accessed

spectrum, and disrupt the normal network communi-

cation, causing system chaos. Therefore, in cooperative

spectrum sensing, identifying MIDs is very important

for FC to make correct decisions. Two indicators are

used in the SSDF attack to measure the performance

of local perception. pf , it represents the probability of

false alarm, that is, detecting the presence of the PU

when the PU does not actually exist; pd, it represents

the probability of detection, and correctly detecting the

existence of the PU.
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Fig. 1 System model

There are three main types of SSDF attacks launched

on the cognitive Internet of Things.

• ”random yes” attack: When sensing that the PU does

not exist, MIDs send the local perception report as 1,

and the probability of conversion is ρ01. When ρ01 = 1,

it is called an ”always yes” attack.

• ”random no” attack: When the presence of a PU is

sensed, MIDs send a local perception report as 0, and

the probability of conversion is ρ10. When ρ10 = 1, it is

called a ”always no” attack.

• ”random false” attack: MIDs reverse the local per-

ception report with a conversion probability of ρ01 or

ρ10 [42].

For three different attackers, because the behavior

and conversion probability of each attack are different,

the final detection probability and false alarm proba-

bility are also different. Not all attackers will definitely

launch an attack, and MIDs are not always aware of the

existence of the PU.With reference to three different

attack types, the detection probability and false alarm

probability of NIDs and three SSDF attackers can be

obtained.

For normal IoT devices, pHd represents the detection

probability, pHf represents the false alarm probability,

and the two probabilities are respectively given by

pHd = pd (4)

pHf = pf (5)

For ”random yes” attackers, use pRY
d and pRY

f to

represent the probability of detection and the probabil-

ity of false alarms, which are given by

pRY
d = pd + (1− pd) · ρ01 (6)

pRY
f = pf + (1− pf ) · ρ01 (7)

1 − pd indicates the probability that the PU does

not exist when the PU is falsely detected, but the PU

actually exists. Assuming that the PU does not exist by

mistake is detected, the ”random yes” attacker will send

a perception report as the PU exists, and the conversion

probability is ρ01, so the probability that the PU is fi-

nally detected correctly is (1−pd) ·ρ01.pd represents the

probability of correctly detecting the existence of the

PU, and finally the detection probability of a ”random

yes” attacker is (6). 1 − pf represents the probability

of correctly detecting that the PU does not exist. As-

suming that the PU does not exist correctly is detected,

the ”random yes” attacker will send a perception report

that the PU exists, with a conversion probability of ρ01,

so the final result is that the PU does not exist, but the

probability of incorrectly detecting that the PU exists

is (1 − pf ) · ρ01. pf represents the probability that the

PU does not exist, but the existence of the false detec-

tion is detected, and the false alarm probability of the

”random yes” attacker is finally obtained as (7)[43].

Similarly, for a ”random no” attacker, pRN
d and pRN

f

are given by

1− pRN
d = pd · ρ10 + (1− pd) (8)

1− pRN
f = pf · ρ10 + (1− pf ) (9)

Similarly, for a ”random false” attacker, pRF
d and

pRF
f are given by

pRF
d = pd · (1− p10) + (1− pd) · ρ01 (10)

pRF
f = pf · (1− p10) + (1− pf ) · ρ01 (11)

Note that at least one of formula ρ01 and ρ10 is non-

zero, otherwise, the behavior of MIDs will be exactly

the same as NIDs in a statistical sense.

In the cognitive network of the sensor layer, if these

NIDs only exist in individual malicious devices, they

can be easily identified through FC’s decision fusion

standard. However, if the number of MIDs is too large,

the fusion strategy adopted by FC will fail, so other

methods must be combined to improve the detection

accuracy of the Fusion Center.

4 Model of resisting SSDF attack based on

Hidden Markov Model

4.1 Attack detection based on Hidden Markov Model

Hidden Markov Model is a time-related probability mod-

el. Its process is to randomly generate an unobservable

sequence of states from the Hidden Markov Model, and

then randomly generate observations from each state to

form an observation sequence [44].

In local spectrum sensing, Q = {q1, q2} is the hidden

state set of the channel, q1 = 1 and q2 = 0 represent

channel occupancy and idle respectively;V = {v1, v2} is
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Fig. 2 NIDs HMM model

the channel state set of the spectrum sensed,v1 = 1 and

v2 = 0 respectively indicate that the results of spectrum

sensing are occupied and idle.qt represents the channel

state of the channel at the time slot t, and ot represents

the corresponding observation value. A = {aij} is the

channel state transition probability matrix, where

aij = P (it+1 = qj |it = qi), 1 ≤ i, j ≤ N (12)

B = {bj(k)} means the hidden channel state is qj
and the channel state detected by the cognitive user is

a conditional probability matrix of vk, where

bj(k) = P (ot = vk|it = qj), 1 ≤ k ≤M, 1 ≤ j ≤ N (13)

The initial channel state probability matrix π =

{π0, π1}, where πi = P (i1 = qi), 1 ≤ i, j ≤ N , rep-

resents the probability of being in state qi at the initial

moment.

Hidden Markov Model is determined by π, A and

B, so HMM can be expressed as λ = (π,A,B). The H-

MM models of honest users and three SSDF attackers

are λH ,λRY ,λRN and λRF , respectively.The abnormal

perception behavior of users will cause the difference

between B in each model, but the parameters π and

A of these four HMMs are the same because all user-

s are perceiving the same frequency spectrum. There-

fore, the four HMM models can be expressed as λH =

{π,A,BH},λRY = {π,A,BRY },λRN = {π,A,BRN} and

λRF = {π,A,BRF }. Figure 2 and Figure 3 show the

HMM model of NIDs and ”random yes” attackers, re-

spectively.

The MIDs in the CRIoT will tamper with the spec-

trum sensing data, so the data obtained by the final FC

may have been tampered with by the MIDs. These da-

ta are quite different from the data sensed by NIDs.A

priori data can be obtained through spectrum sensing,

and the result of spectrum sensing is used as the obser-

vation sequence O = (o1, o2, ..., oT ) of the HMM. Based

on these known observation sequences, FC uses the for-

ward algorithm to calculate the different probabilities

of each IoT device P (O|λH), p(O|λRY ), P (O|λRN ) and

P (O|λH).If FC calculates that the device’s P (O|λH) is

Fig. 3 ”random yes” attacker HMM Model

higher than other probabilities, the device is more likely

to be NID. Conversely, if the probability of p(O|λRY )

is the highest, then the device is likely to be an ”ran-

dom yes” attacker. The forward algorithm is expressed

as follows.

Define the forward variable as

αt(i) = P (o1, o2, ..., ot, it = qi|λ) (14)

Among them,αt(i) is the probability that the mod-

el observation sequence is o1, o2, ..., ot and the state of

time slot t is qi under the premise that the model pa-

rameter λ is determined.

The recursive process of the forward algorithm is as

follows.

• Initialize the parameters.

α1(i) = πibi(o1), 1 ≤ i ≤ N (15)

• Recursion.

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

(16)

• Termination.

P (O|λ) =

N∑
i=1

αT (i) (17)

4.2 Detection algorithm based on Weighted

Combining in FC

In FC, we can get the perception report of each IoT

device and use the above Hidden Markov Mmodel to

calculate that a certain IoT device may be NID or

MID.The FC can make the following judgments. The

device reports to the FC that the PU exists. If it detects

that the device may be NID, it may correctly detect the

presence of the PU. The probability is pHd . It may also

be detected incorrectly. The actual PU does not exist.

The probability is pHf . If it is detected that the device
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may be a ”random yes” attacker, it may correctly de-

tect the presence of the PU, with a probability of pRY
d ,

or may incorrectly detect the presence of the PU, but

the actual PU does not exist, with the probability pRY
f .

Conversely, if the device reports to the FC that the PU

does not exist, if it detects that the device may be NID,

it may correctly detect that the PU does not exist, the

probability is 1− pHf , or it may incorrectly detect that

the PU does not exist, and the PU actually exists, the

probability is 1 − pHf . If it is detected that the device

may be a ”random yes” attacker, it may correctly de-

tect that the PU does not exist, with a probability of

1−pRY
d , or it may incorrectly detect that the PU does

not exist, and the PU actually exists, with a probability

of 1− pRY
f .

We can use the different detection probabilities to

determine the different weights of each device to distin-

guish MIDs and NIDs in the Internet of Things.

wH
t =

pHd
2N
−
pHf
2N

(18)

wH
f =

1− pHd
2N

−
1− pHf

2N
(19)

wH
t and wH

f respectively represent the weights of the

NID perceiving the existence of the PU and perceiving

the absence of the PU.

If you calculate that an Iot device might be a”random

yes”attacker, you can determine the weights in the same

way.

wN
t =

pRY
d

2N
−
pRY
f

2N
(20)

wN
f =

1− pRY
d

2N
−

1− pRY
f

2N
(21)

wN
t and wN

f respectively represent the weights of

perceiving the existence of the PU and perceiving the

non-existence of the PU in the case of ”random yes”

the attacker.

The ”random no” attacker and the ”random false”

attacker are the same as the above situation, and will

not be explained again. We will get different weights for

each IoT device, and add these weights, and the result is

positive means that the PU exists, and negative means

that the PU does not exist. The final decision F (ω) can

be expressed as follows

F (ω) =

{∑N
i=1 ωi > 0, H1∑N
i=1 ωi < 0, H0

(22)
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under ”random yes” attack
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5 Experimental simulation and analysis

In this section, we performed simulations to illustrate

the effectiveness of the method. In this simulation ex-

periment, we mainly use the MATLAB platform to set

the total number of IoT devices N=100, the number

of time slots T=1000, and set different pd to simulate

different noise interference in the channel, and all co-

operative sensor nodes transmit their sensing data to

FC through ideal control channel. Initialize the four

modelsλH , λRY ,λRN , and λRF , initialize and A, set

pd = 0.9, pf = 0.1 to get BH , BRY , BRN , and BRF .

The detection rate can be expressed as the rate at which

the channel state is correctly detected in a certain time

slot.

Figure 4 and Figure 5 show the changes in the detec-

tion rate as the number of MIDs continues to increase

in the case of ”random yes” and ”random no” attack-

s. We compare our proposed method with the K rank

criterion. The K rank criterion is the fusion strategy
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Fig. 6 The relationship between detection rate and MIDs
under ”random false” attacks

adopted by most papers at present, that is, the system

can work normally when no less than K of the N de-

vices work normally. It can be seen from the detection

results that our detection method can distinguish be-

tween attackers and normal devices in IoT devices, and

the weighted combining algorithm we proposed is bet-

ter than the K rank criterion. The detection method

is effective when MIDs account for less than 80% of

the total, but as the number of MIDs continues to in-

crease, the detection rate drops rapidly, because when

the number of MIDs is too large, the result of spectrum

sensing is unreliable.

Figure 6 shows that the detection rate varies with

the number of MIDs under the ”random false” attack. It

can be seen that the detection method is effective when

MIDs account for less than 50% of the total. Howev-
er, as the number of MIDs continues to increase, the

detection rate drops rapidly. The experimental results

show that the opposite sensor data will cause greater

harm to the fusion process. This is because when there

are more than half of the attackers in the IoT device,

the ”random false” attacker will get the data flipped,

which affects the judgment of FC.

Change the attack frequency of the attacker. Under

the ”random yes”, ”random no” and ”random false” at-

tacks, we set three different attack frequencies for com-

parison.

Figure 7, Figure 8 and Figure 9 respectively show

the changes in the detection rate of different attack fre-

quencies under the ”random yes”, ”random no” and

”random false” attacks as the number of MIDs contin-

ues to increase. It can be seen that as the frequency of

attacks increases, the detection performance decreases.

The increase in the frequency of attacks means that the

MIDs will have a greater possibility of launching an at-
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Fig. 7 The relationship between the detection rate of differ-
ent attack frequencies and MIDs under ”random yes” attacks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentage of MIDs

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
ra

te
10

=0.5

10
=0.6

10
=0.7

Fig. 8 The relationship between the detection rate of dif-
ferent attack frequencies and MIDs under the ”random no”
attack
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ferent attack frequencies and MIDs under ”random false” at-
tacks
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Fig. 10 The relationship between different pd detection rates
and MIDs under ”random yes” attacks
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Fig. 11 The relationship between different pd detection rates
and MIDs under ”random no” attacks

tack, so the probability of an attack will increase, which

will affect the detection rate.

Figure 10, Figure 11 and Figure 12 respectively show

the changes in the detection rate of different pd as the

number of MIDs continues to increase under the ”ran-

dom yes”, ”random no” and ”random false” attacks. It

can be seen that as pd increases, the detection rate is

also increasing. pd is the probability of correctly detect-

ing the existence of the PU. Because of the interference

of the noise in the channel, we may not be completely

accurate in the detection of the existence of the PU, be-

cause different signal-to-noise ratios in the channel will

lead to different pd, which further leads to a detection

rate low when there is no noise.

6 conclusion

This paper proposes a cooperative spectrum sensing

strategy based on the weighted combining of Hidden
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Fig. 12 The relationship between different pd detection rates
and MIDs under ”random false” attacks

Markov Model to defend SSDF attacks from malicious

devices in the IoT. This method uses the Hidden Markov

Model to detect the probability of malicious attacks on

each device node and reports it to FC. FC assigns a

reasonable weight value based on the evaluation of the

submitted observation results, so as to avoid FC from

making wrong decisions and correctly judging the chan-

nel status.

This paper studies the performance parameters of

the detection rate under three different attacks with the

increase of malicious devices, and compare our algorith-

m with the traditional K rank criterion. Our algorithm

can use Hidden Markov Model to determine the weight,

so that the final decision made by FC is closer to the

accurate value. In the future, we will further optimize

our detection model to improve the detection rate in the

case of more malicious devices. In addition, the combi-

nation of cognitive radio and IoT will be further studied

to solve more security problems in CIoT.

Declarations

Funding This work was supported by the Excellent

Middle-aged and Young Research and Innovation Team

of Northeast Petroleum University Research on Perfor-

mance Optimization of Oil and Gas Pipeline Internet of

Things, China, No. KYCXTDQ201901. And, the work

also is supported by National Natural Science Founda-

tion of China, No. 61601111. The authors also grateful-

ly acknowledge the helpful comments and suggestions

of the reviewers, which have improved the presentation.

Data Availability Data can be shared and is avail-

able on request. Data can be requested by sending an

email to the main author.



10

Conflict of interest The authors declare that they

have no conflict of interest.

Authors’ contributions Liu Miao conceived and de-

signed the study. Xu Di designed the study and per-

formed experiments. Liu Miao and Xu Di wrote the

paper. Zhuo-Miao Huo and Zhen-xing Sun edited the

manuscript.

References

1. Luigi Atzori, Antonio Iera, and Giacomo Morabito.

The internet of things: A survey. Computer net-

works, 54(15):2787–2805, 2010.

2. Charith Perera, Arkady Zaslavsky, Peter Chris-

ten, and Dimitrios Georgakopoulos. Context aware

computing for the internet of things: A sur-

vey. IEEE communications surveys & tutorials,

16(1):414–454, 2013.

3. Miao Liu, Zhenxing Sun, Yan-chang Liu, and Cun

Zhao. The optimization algorithm for cr system

based on optimal wavelet filter. Wireless Commu-

nications and Mobile Computing, 2019, 2019.

4. Liu Miao, Zhenxing Sun, and Zhang Jie. The par-

allel algorithm based on genetic algorithm for im-

proving the performance of cognitive radio. Wire-

less Communications and Mobile Computing, 2018,

2018.

5. Weidang Lu, Su Hu, Xin Liu, Chenxin He, and Y-

i Gong. Incentive mechanism based cooperative

spectrum sharing for ofdm cognitive iot network.

IEEE Transactions on Network Science and Engi-

neering, 7(2):662–672, 2019.

6. Mingchuan Zhang, Haixia Zhao, Ruijuan Zheng,

Qingtao Wu, and Wangyang Wei. Cognitive in-

ternet of things: concepts and application example.

International Journal of Computer Science Issues

(IJCSI), 9(6):151, 2012.

7. Qihui Wu, Guoru Ding, Yuhua Xu, Shuo Feng,

Zhiyong Du, Jinlong Wang, and Keping Long.

Cognitive internet of things: a new paradigm be-

yond connection. IEEE Internet of Things journal,

1(2):129–143, 2014.

8. Joern Ploennigs, Amadou Ba, and Michael Barry.

Materializing the promises of cognitive iot: How

cognitive buildings are shaping the way. IEEE In-

ternet of Things Journal, 5(4):2367–2374, 2017.

9. Dina Tarek, Abderrahim Benslimane, M Darwish,

and Amira M Kotb. Survey on spectrum shar-

ing/allocation for cognitive radio networks internet

of things. Egyptian Informatics Journal, 2020.

10. Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei

Wang, Chia-Wei Hsu, Chong-Kuan Chen, and Shi-

uhpyng Shieh. Iot security: ongoing challenges and

research opportunities. In 2014 IEEE 7th inter-

national conference on service-oriented computing

and applications, pages 230–234. IEEE, 2014.

11. Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and

Imran Zualkernan. Internet of things (iot) securi-

ty: Current status, challenges and prospective mea-

sures. In 2015 10th International Conference for

Internet Technology and Secured Transactions (IC-

ITST), pages 336–341. IEEE, 2015.

12. Francesca Meneghello, Matteo Calore, Daniel Zuc-

chetto, Michele Polese, and Andrea Zanella. Iot:

Internet of threats? a survey of practical security

vulnerabilities in real iot devices. IEEE Internet of

Things Journal, 6(5):8182–8201, 2019.

13. Zhen Li, Tao Jing, Liran Ma, Yan Huo, and Jin

Qian. Worst-case cooperative jamming for se-

cure communications in ciot networks. Sensors,

16(3):339, 2016.

14. Haythem Bany Salameh, Sufyan Almajali, Moussa

Ayyash, and Hany Elgala. Security-aware channel

assignment in iot-based cognitive radio networks for

time-critical applications. In 2017 Fourth Interna-

tional Conference on Software Defined Systems (S-

DS), pages 43–47. IEEE, 2017.

15. Feten Slimeni, Zied Chtourou, Bart Scheers, Vin-

cent Le Nir, and Rabah Attia. Cooperative q-

learning based channel selection for cognitive ra-

dio networks. Wireless Networks, 25(7):4161–4171,

2019.

16. Pin-Yu Chen, Shin-Ming Cheng, and Kwang-Cheng

Chen. Information fusion to defend intentional at-

tack in internet of things. IEEE Internet of Things

journal, 1(4):337–348, 2014.

17. Bilal Naqvi, Imran Rashid, Faisal Riaz, and Baber

Aslam. Primary user emulation attack and their

mitigation strategies: A survey. In 2013 2nd Na-

tional Conference on Information Assurance (NCI-

A), pages 95–100. IEEE, 2013.

18. Jingyu Feng, Yuqing Zhang, Guangyue Lu, and

Liang Zhang. Defend against collusive ssdf attack

using trust in cooperative spectrum sensing envi-

ronment. In 2013 12th IEEE International Con-

ference on Trust, Security and Privacy in Comput-

ing and Communications, pages 1656–1661. IEEE,

2013.

19. Fan Jin, Vijay Varadharajan, and Udaya Tupaku-

la. An eclat algorithm based energy detection for

cognitive radio networks. In 2017 IEEE Trust-

com/BigDataSE/ICESS, pages 1096–1102. IEEE,

2017.

20. Suchismita Bhattacharjee, Roshni Rajkumari, and

Ningrinla Marchang. Effect of colluding attack in



11

collaborative spectrum sensing. In 2015 2nd Inter-

national Conference on Signal Processing and In-

tegrated Networks (SPIN), pages 223–227. IEEE,

2015.

21. Jingyu Feng, Shaoping Li, Shaoqing Lv, Honggang

Wang, and Anmin Fu. Securing cooperative spec-

trum sensing against collusive false feedback attack

in cognitive radio networks. IEEE Transactions on

Vehicular Technology, 67(9):8276–8287, 2018.

22. Tao Qin, Han Yu, Cyril Leung, Zhiqi Shen, and

Chunyan Miao. Towards a trust aware cognitive ra-

dio architecture. ACM SIGMOBILE Mobile Com-

puting and Communications Review, 13(2):86–95,

2009.

23. Fang Ye, Xun Zhang, and Yibing Li. Comprehen-

sive reputation-based security mechanism against

dynamic ssdf attack in cognitive radio networks.

Symmetry, 8(12):147, 2016.

24. Ming Zhou, Jiafeng Shen, Huifang Chen, and Lei

Xie. A cooperative spectrum sensing scheme based

on the bayesian reputation model in cognitive radio

networks. In 2013 IEEE Wireless Communications

and Networking Conference (WCNC), pages 614–

619. IEEE, 2013.

25. M Yu Morozov, O Yu Perfilov, NV Malyavina,

RV Teryokhin, and IV Chernova. Combined ap-

proach to ssdf-attacks mitigation in cognitive radio

networks. In 2020 Systems of Signals Generating

and Processing in the Field of on Board Communi-

cations, pages 1–4. IEEE, 2020.

26. Muhammad Sajjad Khan, Noor Gul, Junsu Kim,

Ijaz Mansoor Qureshi, and Su Min Kim. A genet-

ic algorithm-based soft decision fusion scheme in

cognitive iot networks with malicious users. Wire-

less Communications and Mobile Computing, 2020,

2020.

27. Wangjam Niranjan Singh, Ningrinla Marchang,

and Amar Taggu. Mitigating ssdf attack using

distance-based outlier approach in cognitive radio

networks. International Journal of Ad Hoc and U-

biquitous Computing, 32(2):119–132, 2019.

28. Zhixu Cheng, Jing Zhang, Tiecheng Song, Jing Hu,

and Xu Bao. Interaction-based detection strategy

against probabilistic ssdf attack in css network. In

2020 IEEE 21st International Workshop on Signal

Processing Advances in Wireless Communications

(SPAWC), pages 1–5. IEEE, 2020.

29. Zhixu Cheng, Jing Zhang, Tiecheng Song, Jing Hu,

and Xu Bao. Interaction-based detection strategy

against probabilistic ssdf attack in css network. In

2020 IEEE 21st International Workshop on Signal

Processing Advances in Wireless Communications

(SPAWC), pages 1–5. IEEE, 2020.

30. Amrapali Shivajirao Chavan and Aparna Jun-

narkar. Dynamic spectrum sensing method for mo-

bile cognitive radio ad hoc networks. In 2020 Inter-

national Conference on Emerging Smart Comput-

ing and Informatics (ESCI), pages 92–97. IEEE,

2020.

31. Xiaofan He, Huaiyu Dai, and Peng Ning. A byzan-

tine attack defender in cognitive radio network-

s: The conditional frequency check. IEEE Trans-

actions on Wireless Communications, 12(5):2512–

2523, 2013.

32. Roshni Rajkumari and Ningrinla Marchang. Mit-

igating spectrum sensing data falsification attack

in ad hoc cognitive radio networks. Internation-

al Journal of Communication Systems, 32(2):e3852,

2019.

33. Kun Zeng, QiHang Peng, and YouXi Tang. Miti-

gating spectrum sensing data falsification attack-

s in hard-decision combining cooperative spec-

trum sensing. Science China Information Sciences,

57(4):1–9, 2014.

34. Yuanhua Fu and Zhiming He. Entropy-based

weighted decision combining for collaborative spec-

trum sensing over byzantine attack. IEEE Wireless

Communications Letters, 8(6):1528–1532, 2019.

35. Fang Ye, Ping Bai, and Yuan Tian. An algorithm

based on evidence theory and fuzzy entropy to de-

fend against ssdf. Journal of Systems Engineering

and Electronics, 31(2):243–251, 2020.

36. Changlong Chen, Min Song, Chunsheng Xin, and

Mansoor Alam. A robust malicious user de-

tection scheme in cooperative spectrum sensing.

In 2012 IEEE Global Communications Conference

(GLOBECOM), pages 4856–4861. IEEE, 2012.

37. Rupam Sarmah, Amar Taggu, and Ningrinla

Marchang. Detecting byzantine attack in cognitive

radio networks using machine learning. Wireless

Networks, 26(8):5939–5950, 2020.

38. Yuanhua Fu and Zhiming He. Bayesian-inference-

based sliding window trust model against prob-

abilistic ssdf attack in cognitive radio networks.

IEEE Systems Journal, 14(2):1764–1775, 2019.

39. Muhammad Sajjad Khan, Liaqat Khan, Noor Gul,

Muhammad Amir, Junsu Kim, and Su Min Kim.

Support vector machine-based classification of ma-

licious users in cognitive radio networks. Wire-

less Communications and Mobile Computing, 2020,

2020.

40. Jun Wu, Cong Wang, Yue Yu, Tiecheng Song, and

Jing Hu. Sequential fusion to defend against sens-

ing data falsification attack for cognitive internet

of things. ETRI Journal, 42(6):976–986, 2020.



12

41. Jun Wu, Pei Li, Yang Chen, Jifei Tang, Chao Wei,

Lanhua Xia, and Tiecheng Song. Analysis of byzan-

tine attack strategy for cooperative spectrum sens-

ing. IEEE Communications Letters, 24(8):1631–

1635, 2020.

42. S Vimal, L Kalaivani, Madasamy Kaliappan, An-

namalai Suresh, Xiao-Zhi Gao, and R Varathara-

jan. Development of secured data transmission us-

ing machine learning-based discrete-time partially

observed markov model and energy optimization

in cognitive radio networks. Neural Computing and

Applications, 32(1):151–161, 2020.

43. Xiaofan He, Huaiyu Dai, and Peng Ning. Hmm-

based malicious user detection for robust collabo-

rative spectrum sensing. IEEE Journal on Selected

Areas in Communications, 31(11):2196–2208, 2013.

44. Lawrence R Rabiner. A tutorial on hidden markov

models and selected applications in speech recogni-

tion. Proceedings of the IEEE, 77(2):257–286, 1989.

Liu Miaoreceived B.S degree at School

of Computer Science and Technology,

Jilin University, China in 2002. In 2008,

she obtained the M.S degree at School of

Computer Science and Technology, Jilin

University. She got a Ph.D. degree at

College of Communication Engineering,

Jilin University in 2011. In 2015, she finished post-

doctoral work at China Petroleum and Natural Gas

Pipeline Bureau, China

Now, she is a professor of Northeast Petroleum Uni-

versity, China. She has dozens of refereed internation-

al publications, including book, journals, and confer-

ences in her research areas. In addition, she got a num-

ber of invention patents and presided over the research

projects supported by the National Natural Science

Foundation of China (NSFC), Postdoctoral Scientific

Research Developmental Fund of China and so on.

She is the chief expert of Excellent Young and Middle-

aged Research and Innovation Team of NNortheast

Petroleum University (Performance Optimization Re-

search Team of Oil and Gas Pipeline Internet of

Things). Her current research interests include the per-

formance optimization of Internet of Things, Cognitive

Radio network and low energy consumption communi-

cation protocol.

Xu Direceived the B.S. degree from

the Taiyuan University, China, in 2020.

From 2016 to 2020, she was an under-

graduate with College of Computer Sci-

ence and Technology.

Since 2020, she is currently pursuing

M.S degree in Northeast Petroleum U-

niversity, Heilongjiang, China. Her current research in-

terests include Internet of Things, energy harvesting,

and Cognitive Radio networks.

Zhuo-miao Huoreceived the B.S. de-

gree from the Jinggangshan University,

China, in 2019. From 2015 to 2019, was

an undergraduate with College of Elec-

tronic Information Science and Technol-

ogy.

Since 2020, she is currently pursuing

M.S degree in Northeast Petroleum University, Hei-

longjiang, China. Her current research interests include

Internet of Things, energy harvesting, and Cognitive

Radio networks.

Since 2020, she is currently pursuing M.S degree in

Northeast Petroleum University, Heilongjiang, China.

Her current research interests include Internet of Things,

energy harvesting, and Cognitive Radio networks.

Zhen-xing Sunreceived B.S. degree and

M.S. degree from Northeast Petroleum

University, Daqing, China, in 2003 and

in 2011, respectively. He has been a doc-

toral student in Northeastern Universi-

ty, Shenyang, China, since 2015. Cur-

rently, he is an assistant professor at

Department of Electronics and Informa-

tion Engineering, Northeast Petroleum University at
Qinhuangdao since 2017. His research interests include

Cognitive Radio network, Internet of Things IoT, in-

terference management technique in Ultra-Dense Net-

works.


