1 Bowes Rickman, C., Farsiu, S., Toth, C. A. & Klingeborn, M. Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging. Investigative ophthalmology & visual science 54, ORSF68-80, doi:10.1167/iovs.13-12757 (2013).
2 Bird, A. C. Therapeutic targets in age-related macular disease. The Journal of clinical investigation 120, 3033-3041, doi:10.1172/JCI42437 (2010).
3 Gorin, M. B. Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med 33, 467-486, doi:10.1016/j.mam.2012.04.004 (2012).
4 Boyer, D. S., Schmidt-Erfurth, U., van Lookeren Campagne, M., Henry, E. C. & Brittain, C. The Pathophysiology of Geographic Atrophy Secondary to Age-Related Macular Degeneration and the Complement Pathway as a Therapeutic Target. Retina 37, 819-835, doi:10.1097/IAE.0000000000001392 (2017).
5 Danis, R. P., Lavine, J. A. & Domalpally, A. Geographic atrophy in patients with advanced dry age-related macular degeneration: current challenges and future prospects. Clin Ophthalmol 9, 2159-2174, doi:10.2147/OPTH.S92359 (2015).
6 Kaszubski, P., Ben Ami, T., Saade, C. & Smith, R. T. Geographic Atrophy and Choroidal Neovascularization in the Same Eye: A Review. Ophthalmic research 55, 185-193, doi:10.1159/000443209 (2016).
7 Demmler, G. J. Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis 13, 315-329 (1991).
8 Presti, R. M., Pollock, J. L., Dal Canto, A. J., O'Guin, A. K. & Virgin, H. W. t. Interferon gamma regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J Exp Med 188, 577-588 (1998).
9 Dupont, L. & Reeves, M. B. Cytomegalovirus latency and reactivation: recent insights into an age old problem. Rev Med Virol 26, 75-89, doi:10.1002/rmv.1862 (2016).
10 Pass, R. F., Stagno, S., Myers, G. J. & Alford, C. A. Outcome of symptomatic congenital cytomegalovirus infection: results of long-term longitudinal follow-up. Pediatrics 66, 758-762 (1980).
11 Leinikki, P., Granstrom, M. L., Santavuori, P. & Pettay, O. Epidemiology of cytomegalovirus infections during pregnancy and infancy. A prospective study. Scandinavian journal of infectious diseases 10, 165-171 (1978).
12 Hanshaw, J. B. Congenital cytomegalovirus infection: a fifteen year perspective. The Journal of infectious diseases 123, 555-561 (1971).
13 Lanzieri, T. M. et al. Seroprevalence of cytomegalovirus among children 1 to 5 years of age in the United States from the National Health and Nutrition Examination Survey of 2011 to 2012. Clin Vaccine Immunol 22, 245-247, doi:10.1128/CVI.00697-14 (2015).
14 Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 282, 20143085, doi:10.1098/rspb.2014.3085 (2015).
15 Boppana, S. et al. Late onset and reactivation of chorioretinitis in children with congenital cytomegalovirus infection. Pediatr Infect Dis J 13, 1139-1142 (1994).
16 Istas, A. S., Demmler, G. J., Dobbins, J. G. & Stewart, J. A. Surveillance for congenital cytomegalovirus disease: a report from the National Congenital Cytomegalovirus Disease Registry. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 20, 665-670 (1995).
17 Stagno, S., Pass, R. F., Dworsky, M. E. & Alford, C. A. Congenital and perinatal cytomegalovirus infections. Semin Perinatol 7, 31-42 (1983).
18 Xu, J. et al. Ocular cytomegalovirus latency exacerbates the development of choroidal neovascularization. The Journal of pathology 251, 200-212, doi:10.1002/path.5447 (2020).
19 Miller, D. M. et al. The association of prior cytomegalovirus infection with neovascular age-related macular degeneration. American journal of ophthalmology 138, 323-328, doi:10.1016/j.ajo.2004.03.018 (2004).
20 Cousins, S. W. et al. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization. PLoS pathogens 8, e1002671, doi:10.1371/journal.ppat.1002671 (2012).
21 Fernandez-Godino, R., Garland, D. L. & Pierce, E. A. Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc 11, 1206-1218, doi:10.1038/nprot.2016.065 (2016).
22 Zhang, M., Xin, H., Duan, Y. & Atherton, S. S. Ocular reactivation of MCMV after immunosuppression of latently infected BALB/c mice. Invest Ophthalmol Vis Sci 46, 252-258, doi:10.1167/iovs.04-0537 (2005).
23 Zhang, M., Xin, H. & Atherton, S. S. Murine cytomegalovirus (MCMV) spreads to and replicates in the retina after endotoxin-induced disruption of the blood-retinal barrier of immunosuppressed BALB/c mice. Journal of neurovirology 11, 365-375, doi:10.1080/13550280591002432 (2005).
24 Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181 (1991).
25 Drexler, W. et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7, 502-507, doi:10.1038/86589 (2001).
26 Curcio, C. A. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Investigative ophthalmology & visual science 59, AMD160-AMD181, doi:10.1167/iovs.18-24882 (2018).
27 Spaide, R. F., Ooto, S. & Curcio, C. A. Subretinal drusenoid deposits AKA pseudodrusen. Surv Ophthalmol 63, 782-815, doi:10.1016/j.survophthal.2018.05.005 (2018).
28 Rabiolo, A. et al. Spotlight on reticular pseudodrusen. Clin Ophthalmol 11, 1707-1718, doi:10.2147/OPTH.S130165 (2017).
29 Wills, M. R., Poole, E., Lau, B., Krishna, B. & Sinclair, J. H. The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies? Cell Mol Immunol 12, 128-138, doi:10.1038/cmi.2014.75 (2015).
30 Caposio, P., Orloff, S. L. & Streblow, D. N. The role of cytomegalovirus in angiogenesis. Virus Res 157, 204-211, doi:10.1016/j.virusres.2010.09.011 (2011).
31 Caposio, P. et al. Targeting the NF-kappaB pathway through pharmacological inhibition of IKK2 prevents human cytomegalovirus replication and virus-induced inflammatory response in infected endothelial cells. Antiviral Res 73, 175-184, doi:10.1016/j.antiviral.2006.10.001 (2007).
32 Botto, S. et al. IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117, 352-361, doi:10.1182/blood-2010-06-291245 (2011).
33 Penfold, M. E. et al. Cytomegalovirus encodes a potent alpha chemokine. Proceedings of the National Academy of Sciences of the United States of America 96, 9839-9844 (1999).
34 Dumortier, J. et al. Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. Journal of virology 82, 6524-6535, doi:10.1128/JVI.00502-08 (2008).
35 Maussang, D. et al. The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 69, 2861-2869, doi:10.1158/0008-5472.CAN-08-2487 (2009).
36 Yee, L. F., Lin, P. L. & Stinski, M. F. Ectopic expression of HCMV IE72 and IE86 proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1 cells. Virology 363, 174-188, doi:10.1016/j.virol.2007.01.036 (2007).
37 Goodrum, F. Human Cytomegalovirus Latency: Approaching the Gordian Knot. Annu Rev Virol 3, 333-357, doi:10.1146/annurev-virology-110615-042422 (2016).
38 Knoblach, T., Grandel, B., Seiler, J., Nevels, M. & Paulus, C. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-gamma. PLoS pathogens 7, e1002016, doi:10.1371/journal.ppat.1002016 (2011).
39 Reitsma, J. M., Sato, H., Nevels, M., Terhune, S. S. & Paulus, C. Human cytomegalovirus IE1 protein disrupts interleukin-6 signaling by sequestering STAT3 in the nucleus. Journal of virology 87, 10763-10776, doi:10.1128/JVI.01197-13 (2013).
40 Hayashi, K., Kurihara, I. & Uchida, Y. Studies of ocular murine cytomegalovirus infection. Investigative ophthalmology & visual science 26, 486-493 (1985).
41 Bale, J. F., Jr., O'Neil, M. E., Lyon, B. & Perlman, S. The pathogenesis of murine cytomegalovirus ocular infection. Anterior chamber inoculation. Investigative ophthalmology & visual science 31, 1575-1581 (1990).
42 Kercher, L. & Mitchell, B. M. Persisting murine cytomegalovirus can reactivate and has unique transcriptional activity in ocular tissue. J Virol 76, 9165-9175 (2002).
43 Gao, E. K., Yu, X. H., Lin, C. P., Zhang, H. & Kaplan, H. J. Intraocular viral replication after systemic murine cytomegalovirus infection requires immunosuppression. Investigative ophthalmology & visual science 36, 2322-2327 (1995).
44 Dix, R. D. Systemic murine cytomegalovirus infection of mice with retrovirus-induced immunodeficiency results in ocular infection but not retinitis. Ophthalmic research 30, 295-301 (1998).
45 Bale, J. F., Jr., O'Neil, M. E., Hogan, R. N. & Kern, E. R. Experimental murine cytomegalovirus infection of ocular structures. Arch Ophthalmol 102, 1214-1219 (1984).
46 Voigt, V. et al. Cytomegalovirus establishes a latent reservoir and triggers long-lasting inflammation in the eye. PLoS pathogens 14, e1007040, doi:10.1371/journal.ppat.1007040 (2018).
47 van Well, G. T. J., Daalderop, L. A., Wolfs, T. & Kramer, B. W. Human perinatal immunity in physiological conditions and during infection. Mol Cell Pediatr 4, 4, doi:10.1186/s40348-017-0070-1 (2017).
48 Sugita, S. Role of ocular pigment epithelial cells in immune privilege. Arch Immunol Ther Exp (Warsz) 57, 263-268, doi:10.1007/s00005-009-0030-0 (2009).
49 Keino, H., Horie, S. & Sugita, S. Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res 2018, 1679197, doi:10.1155/2018/1679197 (2018).
50 Ao, J., Wood, J. P., Chidlow, G., Gillies, M. C. & Casson, R. J. Retinal pigment epithelium in the pathogenesis of age-related macular degeneration and photobiomodulation as a potential therapy? Clin Exp Ophthalmol 46, 670-686, doi:10.1111/ceo.13121 (2018).
51 Streilein, J. W., Ma, N., Wenkel, H., Ng, T. F. & Zamiri, P. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vision Res 42, 487-495 (2002).
52 Stein-Streilein, J. Immune regulation and the eye. Trends in immunology 29, 548-554, doi:10.1016/j.it.2008.08.002 (2008).
53 Pennesi, M. E., Neuringer, M. & Courtney, R. J. Animal models of age related macular degeneration. Mol Aspects Med 33, 487-509, doi:10.1016/j.mam.2012.06.003 (2012).
54 Fletcher, E. L. et al. Studying age-related macular degeneration using animal models. Optom Vis Sci 91, 878-886, doi:10.1097/OPX.0000000000000322 (2014).
55 Ding, J. D. et al. The role of complement dysregulation in AMD mouse models. Adv Exp Med Biol 801, 213-219, doi:10.1007/978-1-4614-3209-8_28 (2014).
56 Copland, D. A., Theodoropoulou, S., Liu, J. & Dick, A. D. A Perspective of AMD Through the Eyes of Immunology. Investigative ophthalmology & visual science 59, AMD83-AMD92, doi:10.1167/iovs.18-23893 (2018).
57 Buschini, E., Piras, A., Nuzzi, R. & Vercelli, A. Age related macular degeneration and drusen: neuroinflammation in the retina. Prog Neurobiol 95, 14-25, doi:10.1016/j.pneurobio.2011.05.011 (2011).
58 Ramkumar, H. L., Zhang, J. & Chan, C. C. Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 29, 169-190, doi:10.1016/j.preteyeres.2010.02.002 (2010).
59 Marques, R. E., Guabiraba, R., Russo, R. C. & Teixeira, M. M. Targeting CCL5 in inflammation. Expert Opin Ther Targets 17, 1439-1460, doi:10.1517/14728222.2013.837886 (2013).
60 Suffee, N. et al. Angiogenic properties of the chemokine RANTES/CCL5. Biochem Soc Trans 39, 1649-1653, doi:10.1042/BST20110651 (2011).
61 Nagineni, C. N. et al. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration. Aging Dis 6, 444-455, doi:10.14336/AD.2015.0323 (2015).
62 Krogh Nielsen, M. et al. Chemokine Profile and the Alterations in CCR5-CCL5 Axis in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Investigative ophthalmology & visual science 61, 28, doi:10.1167/iovs.61.4.28 (2020).
63 Atherton, S. S., Newell, C. K., Kanter, M. Y. & Cousins, S. W. T cell depletion increases susceptibility to murine cytomegalovirus retinitis. Investigative ophthalmology & visual science 33, 3353-3360 (1992).
64 Mo, J. et al. Role of Bax in death of uninfected retinal cells during murine cytomegalovirus (MCMV) retinitis. Invest Ophthalmol Vis Sci, doi:10.1167/iovs.14-15404 (2014).
65 Pande, H. et al. Characterization of a 52K protein of murine cytomegalovirus and its immunological cross-reactivity with the DNA-binding protein ICP36 of human cytomegalovirus. J Gen Virol 72 ( Pt 6), 1421-1427, doi:10.1099/0022-1317-72-6-1421 (1991).
66 Zhang, M., Xin, H., Roon, P. & Atherton, S. S. Infection of retinal neurons during murine cytomegalovirus retinitis. Invest Ophthalmol Vis Sci 46, 2047-2055, doi:10.1167/iovs.05-0005 (2005).
67 Xu, J. et al. Inflammation and outer blood-retina barrier (BRB) compromise following choroidal murine cytomegalovirus (MCMV) infections. Mol Vis 24, 379-394 (2018).
68 Xu, J. et al. Depletion of the Receptor-Interacting Protein Kinase 3 (RIP3) Decreases Photoreceptor Cell Death During the Early Stages of Ocular Murine Cytomegalovirus Infection. Investigative ophthalmology & visual science 59, 2445-2458, doi:10.1167/iovs.18-24086 (2018).
69 Zhang, M., Covar, J., Marshall, B., Dong, Z. & Atherton, S. S. Lack of TNF-alpha promotes caspase-3-independent apoptosis during murine cytomegalovirus retinitis. Investigative ophthalmology & visual science 52, 1800-1808, doi:10.1167/iovs.10-6904 (2011).
70 Zhang, M., Marshall, B. & Atherton, S. S. Murine cytomegalovirus infection and apoptosis in organotypic retinal cultures. Investigative ophthalmology & visual science 49, 295-303, doi:10.1167/iovs.07-0612 (2008).