[1] R.L. Siegel, K.D. Miller, A. Goding Sauer, S.A. Fedewa, L.F. Butterly, J.C. Anderson, A. Cercek, R.A. Smith, A. Jemal, Colorectal cancer statistics, 2020, CA: a cancer journal for clinicians 70(3) (2020) 145-164.
[2] R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer Statistics, 2021, CA: a cancer journal for clinicians 71(1) (2021).
[3] T. Hu, Y. Yao, S. Yu, H. Guo, L. Han, W. Wang, T. Tian, Y. Hao, Z. Liu, K. Nan, S. Wang, Clinicopathologic significance of CXCR4 and Nrf2 in colorectal cancer, J Biomed Res 27(4) (2013) 283-290.
[4] T.-H. Hu, Y. Yao, S. Yu, L.-L. Han, W.-J. Wang, H. Guo, T. Tian, Z.-P. Ruan, X.-M. Kang, J. Wang, S.-H. Wang, K.-J. Nan, SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/β-catenin signaling pathway, Cancer letters 354(2) (2014) 417-426.
[5] I. Balciscueta, Z. Balciscueta, N. Uribe, E. García-Granero, Perineural invasion is increased in patients receiving colonic stenting as a bridge to surgery: a systematic review and meta-analysis, Tech Coloproctol (2020).
[6] T. Suzuki, K. Suwa, M. Ogawa, K. Eto, H. Kawahara, T. Fujita, M. Ikegami, K. Yanaga, Adjuvant chemotherapy for the perineural invasion of colorectal cancer, J Surg Res 199(1) (2015) 84-89.
[7] H.C. van Wyk, J. Going, P. Horgan, D.C. McMillan, The role of perineural invasion in predicting survival in patients with primary operable colorectal cancer: A systematic review, Crit Rev Oncol Hematol 112 (2017) 11-20.
[8] L.G.J. Leijssen, A.M. Dinaux, M.S. Taylor, V. Deshpande, H. Kunitake, L.G. Bordeianou, D.L. Berger, Perineural Invasion Is a Prognostic but not a Predictive Factor in Nonmetastatic Colon Cancer, Dis Colon Rectum 62(10) (2019) 1212-1221.
[9] K. Aravantinou-Fatorou, F. Ortega, D. Chroni-Tzartou, N. Antoniou, C. Poulopoulou, P.K. Politis, B. Berninger, R. Matsas, D. Thomaidou, CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons, Stem Cell Reports 5(3) (2015) 405-418.
[10] P.K. Politis, G. Makri, D. Thomaidou, M. Geissen, H. Rohrer, R. Matsas, BM88/CEND1 coordinates cell cycle exit and differentiation of neuronal precursors, Proceedings of the National Academy of Sciences of the United States of America 104(45) (2007) 17861-17866.
[11] K. Tsioras, F. Papastefanaki, P.K. Politis, R. Matsas, M. Gaitanou, Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells, PloS one 8(11) (2013) e82172.
[12] P.K. Politis, S. Akrivou, C. Hurel, O. Papadodima, R. Matsas, BM88/Cend1 is involved in histone deacetylase inhibition-mediated growth arrest and differentiation of neuroblastoma cells, Febs Lett 582(5) (2008) 741-748.
[13] T. Aasen, I. Sansano, M.A. Montero, C. Romagosa, J. Temprana-Salvador, A. Martinez-Marti, T. Moline, J. Hernandez-Losa, S. Ramon y Cajal, Insight into the Role and Regulation of Gap Junction Genes in Lung Cancer and Identification of Nuclear Cx43 as a Putative Biomarker of Poor Prognosis, Cancers (Basel) 11(3) (2019).
[14] R.J. Ruch, Connexin43 Suppresses Lung Cancer Stem Cells, Cancers (Basel) 11(2) (2019).
[15] J. Yang, G. Qin, M. Luo, J. Chen, Q. Zhang, L. Li, L. Pan, S. Qin, Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT, Cell Death Dis 6 (2015) e1829.
[16] S.G. Zeng, X. Lin, J.C. Liu, J. Zhou, Hypoxiainduced internalization of connexin 26 and connexin 43 in pulmonary epithelial cells is involved in the occurrence of nonsmall cell lung cancer via the P53/MDM2 signaling pathway, Int J Oncol 55(4) (2019) 845-859.
[17] I. Donner, R. Katainen, L.J. Sipilä, M. Aavikko, E. Pukkala, L.A. Aaltonen, Germline mutations in young non-smoking women with lung adenocarcinoma, Lung Cancer 122 (2018) 76-82.
[18] H.J. Son, C.H. An, N.J. Yoo, S.H. Lee, Tight Junction-Related CLDN5 and CLDN6 Genes, and Gap Junction-Related GJB6 and GJB7 Genes Are Somatically Mutated in Gastric and Colorectal Cancers, Pathol Oncol Res 26(3) (2020) 1983-1987.
[19] J. Luo, Y. Xie, Y. Zheng, C. Wang, F. Qi, J. Hu, Y. Xu, Comprehensive insights on pivotal prognostic signature involved in clear cell renal cell carcinoma microenvironment using the ESTIMATE algorithm, Cancer medicine 9(12) (2020) 4310-4323.
[20] M. Artesi, J. Kroonen, M. Bredel, M. Nguyen-Khac, M. Deprez, L. Schoysman, C. Poulet, A. Chakravarti, H. Kim, D. Scholtens, T. Seute, B. Rogister, V. Bours, P.A. Robe, Connexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy, Neuro Oncol 17(3) (2015) 392-406.
[21] I. Teleki, A.M. Szasz, M.E. Maros, B. Gyorffy, J. Kulka, N. Meggyeshazi, G. Kiszner, P. Balla, A. Samu, T. Krenacs, Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis, PloS one 9(11) (2014) e112541.
[22] J.J. Kelly, Q. Shao, D.J. Jagger, D.W. Laird, Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions, J Cell Sci 128(21) (2015) 3947-3960.
[23] M. Hernández-Guerra, A. Hadjihambi, R. Jalan, Gap junctions in liver disease: Implications for pathogenesis and therapy, J Hepatol 70(4) (2019) 759-772.
[24] D.W. Laird, P.D. Lampe, Therapeutic strategies targeting connexins, Nat Rev Drug Discov 17(12) (2018) 905-921.
[25] T. Aasen, M. Mesnil, C.C. Naus, P.D. Lampe, D.W. Laird, Gap junctions and cancer: communicating for 50 years, Nature reviews. Cancer 16(12) (2016) 775-788.
[26] S. Fostok, M. El-Sibai, D. Bazzoun, S. Lelievre, R. Talhouk, Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling, Cancers (Basel) 11(3) (2019).