1. Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry 75, 336–346 (2018).
2. Beesdo, K., Pine, D. S., Lieb, R. & Wittchen, H. U. Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Arch. Gen. Psychiatry 67, 47–57 (2010).
3. Lenze, E. J. et al. Generalized anxiety disorder in late life: Lifetime course and comorbidity with major depressive disorder. Am. J. Geriatr. Psychiatry 13, 77–80 (2005).
4. Kalin, N. H. The critical relationship between anxiety and depression. Am. J. Psychiatry 177, 365–367 (2020).
5. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science (80-. ). 360, (2018).
6. James, S. L. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).
7. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. APA Fifth Edit, (2013).
8. McTeague, L. M. et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).
9. McTeague, L. M. et al. Identification of common neural circuit disruptions in emotional processing across psychiatric disorders. Am. J. Psychiatry 177, 411–421 (2020).
10. Goodkind, M. et al. Identification of a common neurobiological substrate for mental Illness. JAMA Psychiatry 72, 305–315 (2015).
11. Van Tol, M. J. et al. Regional brain volume in depression and anxiety disorders. Arch. Gen. Psychiatry 67, 1002–1011 (2010).
12. Radonjić, N. V. et al. Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Mol. Psychiatry (2021). doi:10.1038/s41380-020-01002-z
13. Etkin, A. & Cuthbert, B. Beyond the DSM: Development of a transdiagnostic psychiatric neuroscience course. Acad. Psychiatry 38, 145–150 (2014).
14. Janiri, D. et al. Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. JAMA Psychiatry 77, 172–179 (2020).
15. Sharp, P. B., Miller, G. A. & Heller, W. Transdiagnostic dimensions of anxiety: Neural mechanisms, executive functions, and new directions. Int. J. Psychophysiol. 98, 365–377 (2015).
16. Feczko, E. et al. The Heterogeneity Problem: Approaches to Identify Psychiatric Subtypes. Trends Cogn. Sci. 23, 584–601 (2019).
17. Savulich, G. et al. Acute anxiety and autonomic arousal induced by CO2 inhalation impairs prefrontal executive functions in healthy humans. Transl. Psychiatry 9, (2019).
18. Shi, R., Sharpe, L. & Abbott, M. A meta-analysis of the relationship between anxiety and attentional control. Clin. Psychol. Rev. 72, 101754 (2019).
19. Flaks, M. K. et al. Attentional and executive functions are differentially affected by post-traumatic stress disorder and trauma. J. Psychiatr. Res. 48, 32–39 (2014).
20. Aupperle, R. L., Melrose, A. J., Stein, M. B. & Paulus, M. P. Executive function and PTSD: Disengaging from trauma. Neuropharmacology 62, 686–694 (2012).
21. Brewin, C. R. & Holmes, E. A. Psychological theories of posttraumatic stress disorder. Clin. Psychol. Rev. 23, 339–376 (2003).
22. Durand, F., Isaac, C. & Januel, D. Emotional memory in post-traumatic stress disorder: A systematic PRISMA review of controlled studies. Front. Psychol. 10, (2019).
23. Warren, S. L., Heller, W. & Miller, G. A. The Structure of Executive Dysfunction in Depression and Anxiety. J. Affect. Disord. 279, 208–216 (2021).
24. Ashendorf, L. et al. Trail Making Test errors in normal aging, mild cognitive impairment, and dementia. Arch. Clin. Neuropsychol. 23, 129–137 (2008).
25. Rosano, C. et al. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. Age Ageing 45, 687–694 (2016).
26. Matsuda, O. & Saito, M. Crystallized and fluid intelligence in elderly patients with mild dementia of the Alzheimer type. Int. Psychogeriatrics 10, 147–154 (1998).
27. Pike, K. E., Rowe, C. C., Moss, S. A. & Savage, G. Memory Profiling With Paired Associate Learning in Alzheimer’s Disease, Mild Cognitive Impairment, and Healthy Aging. Neuropsychology 22, 718–728 (2008).
28. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in Major Depressive Disorder: Meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).
29. Xu, J. et al. Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci. Biobehav. Rev. 96, 21–30 (2019).
30. Modi, S., Kumar, M., Kumar, P. & Khushu, S. Aberrant functional connectivity of resting state networks associated with trait anxiety. Psychiatry Res. - Neuroimaging 234, 25–34 (2015).
31. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).
32. Gray, J. P., Müller, V. I., Eickhoff, S. B. & Fox, P. T. Multimodal Abnormalities of Brain Structure and Function in Major Depressive Disorder: A Meta-Analysis of Neuroimaging Studies. Am. J. Psychiatry appi.ajp.2019.1 (2020). doi:10.1176/appi.ajp.2019.19050560
33. Pink, A. et al. Cortical thickness and anxiety symptoms among cognitively normal elderly persons: The mayo clinic study of aging. J. Neuropsychiatry Clin. Neurosci. 29, 60–66 (2017).
34. Jankord, R. & Herman, J. P. LIMBIC REGULATION OF HYPOTHALAMO-PITUITARY- ADRENOCORTICAL FUNCTION DURING ACUTE AND CHRONIC STRESS. Ann N Y Acad Sci. 1148, 64–73 (2008).
35. Levis, B. et al. Accuracy of the PHQ-2 Alone and in Combination with the PHQ-9 for Screening to Detect Major Depression: Systematic Review and Meta-analysis. JAMA - J. Am. Med. Assoc. 323, 2290–2300 (2020).
36. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
37. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and Surface Reconstruction. Neuroimage 9, 195–207 (1999).
38. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
39. Alfaro-Almagro, F. et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400–424 (2018).
40. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).
41. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
42. Salthouse, T. A. What cognitive abilities are involved in trail-making performance? Intelligence 39, 222–232 (2011).
43. Norbert M. Seel. Encyclopedia of the Sciences of Learning. Encyclopedia of the Sciences of Learning (2012). doi:10.1007/978-1-4419-1428-6
44. Jaeger, J. Digit symbol substitution test. J. Clin. Psychopharmacol. 38, 513–519 (2018).
45. Wainberg, M. et al. Symptom dimensions of major depression in a large community-based cohort. (2021).
46. Meier, S. M. et al. Genetic Variants Associated with Anxiety and Stress-Related Disorders: A Genome-Wide Association Study and Mouse-Model Study. JAMA Psychiatry 76, 924–932 (2019).
47. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 1–16 (2019).
48. Anderson, K. M. et al. Convergent molecular, cellular, and cortical neuroimaging signatures of major depressive disorder. Proc. Natl. Acad. Sci. 117, 202008004 (2020).
49. Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl. Acad. Sci. 116, 9604–9609 (2019).
50. Spijker, J., Muntingh, A. & Batelaan, N. Advice for Clinicians onHow to Treat Comorbid Anxiety and Depression. Depress. Anxiety 31, 934–940 (2014).
51. Saade, Y. M. et al. Comorbid anxiety in late-life depression: Relationship with remission and suicidal ideation on venlafaxine treatment. Depress. Anxiety 36, 1125–1134 (2019).
52. Shin, L. M. & Liberzon, I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169–191 (2010).
53. Morey, R. A. et al. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch. Gen. Psychiatry 69, 1169–1178 (2012).
54. Furman, D. J., Hamilton, J. P. & Gotlib, I. H. Frontostriatal functional connectivity in major depressive disorder. Biol. Mood Anxiety Disord. 1, (2011).
55. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1–10 (2018).
56. Ittenger, C. & Etkin, A. Are there biological commonalities amongdifferent psychiatric disorders? in Psychiatry (3rd edition) 245–256 (2008).
57. Zelazo, P. D. Executive Function and Psychopathology: A Neurodevelopmental Perspective. Annu. Rev. Clin. Psychol. 16, 431–454 (2020).
58. Diamond, A. Executive Function. Annu. Rev. Psychol. 64, 136–168 (2013).
59. Whelan, R. et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat. Neurosci. 15, 920–925 (2012).
60. Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. xx 1–24 (2011). doi:10.1016/j.tics.2011.08.003
61. Menon, V. Large-Scale Brain Networks in Cognition: Emerging Principles. Neogene Quat. Dinoflag. cysts acritarchs 121–132 (2010).
62. Nowrangi, M. A., Lyketsos, C., Rao, V. & Munro, C. A. Systematic review of neuroimaging correlates of executive functioning: Converging evidence from different clinical populations. J. Neuropsychiatry Clin. Neurosci. 26, 114–125 (2014).
63. Shen, X. et al. Resting-State Connectivity and Its Association With Cognitive Performance, Educational Attainment, and Household Income in the UK Biobank. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 878–886 (2018).
64. Marek, S. et al. Towards Reproducible Brain-Wide Association Studies Affiliations. bioRxiv 15–18 (2020).
65. Seghier, M. L. & Price, C. J. Interpreting and Utilising Intersubject Variability in Brain Function. Trends Cogn. Sci. 22, 517–530 (2018).
66. Li, R. et al. Linking inter-individual variability in functional brain connectivity to cognitive ability in elderly individuals. Front. Aging Neurosci. 9, 1–13 (2017).
67. Vaci, N. et al. Natural language processing for structuring clinical text data on depression using UK-CRIS. Evid. Based. Ment. Health 23, 21–26 (2020).
68. Oathes, D. J., Patenaude, B., Schatzberg, A. F. & Etkin, A. Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol. Psychiatry 77, 385–393 (2015).