1. Lemos, G. V. B., Hanke, S., Dos Santos, J. F., Bergmann, L., Reguly, A., Strohaecker, T. R.. Progress in friction stir welding of Ni alloys. Sci Technol Weld Join, 22 (2017), pp. 643-657, https://doi.org/10.1080/13621718.2017.1288953
2. Lemos, G. V. B., Farina, A. B., Nunes, R. M., Cunha, P. H. C. P., Bergmann, L., Dos Santos, J. F., Reguly, A. Residual stress characterization in friction stir welds of alloy 625. J Mater Res Technol, 8 (3) (2019), pp. 2528-2537, https://doi.org/10.1016/j.jmrt.2019.02.011
3. Davis, J. R., ed. Corrosion of Weldments. ASM International, 2006.
4. Rebak, R. B. (2011) Stress corrosion cracking (SCC) of nickel-based alloys. Stress Corros Crack Theory Pract 273–306. https://doi.org/10.1533/9780857093769.3.273
5. Farina, A. B. Efeito do teor de ferro e do tratamento térmico na microestrutura e propriedades da liga UNS N06625. [PhD thesis]. Polytechnic School of the University of São Paulo, Metallurgical and Materials Engineering Department (2014)
6. Sims. C. T., Stoloff, N. S., Hagel, W. C. A Review of: “SUPERALLOYS II”. A Wiley Interscience Publication John Wiley& Sons, New York, NY 615 pages, hardcover, 1987.
7. Floreen, S., Fuchs, G. E., Yang, W.J. The Metallurgy of Alloy-625. Superalloys 718, 625, 706 and Various Derivatives. 1994:13-37.
8. Radavich, J. F., Fort, A. Effects of long term exposure in alloy 625 at 1200 F, 1400 F, and 1600 F. Superalloys 718, 625, 706 and Various Derivatives. TMS. 1994. p. 635.
9. Song, K. H., Nakata, K. Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding. Mater Design. 2010 Jun;31(6):2942-7.
10. Köhler, M., Heubner, U. Time temperature-sensitization and time temperature-precipitation behavior of alloy 625. No. CONF-960389. NACE International, Houston, TX (United States), 1996.
11. Rohrer G. S. Grain boundary energy anisotropy: a review. J Mater Sci 46, 5881–5895 (2011). https://doi.org/10.1007/s10853-011-5677-3
12. Hanke, S., Lemos, G. V. B., Bergmann, L, Martinazzi. D, Dos Santos, J. F., Strohaecker, T. R. Degradation mechanisms of pcBN tool material during friction stir welding of Ni-base alloy 625. Wear, 376–377 (2017), pp. 403-408, https://doi.org/10.1016/j.wear.2017.01.070
13. Lackner, R., Mori, G., Egger, R., Winter, F., Albu, M., Grogger, W. Sensitization of as Rolled and Stable Annealed Alloy 625. BHM Berg-und Hüttenmännische Monatshefte, (2014), 159(1), 12-22. https://doi.org/s00501-013-0225-x
14. Cihal, V., Shoji, T., Kain, V., Watanabe, Y., Stefec, R. Electrochemical Polarization Reactivation Technique: EPR- a Comprehensive Review, Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University (2004)
15. Cihal, V. Intergranular Corrosion of Steels and Alloys, Elsevier Science Publishers, BV (1984), pp. 368–382 5.
16. Cihal, V, Štefec, R. On the development of the electrochemical potentiokinetic method, Electrochimica Acta, 46 (2001), pp. 3867– 387. https://doi.org/10.1016/S0013-4686(01)00674-0
17. Prohaska, M., Mori, G., Hofstätter, H., Tischler, G., Grill, R. Corrosion Properties of Different Highly Alloyed Clad Materials for Offshore Applications Manufactured by a New Thermo-Mechanical Rolling Process, Proceedings of Corrosion 2011, March 10th— 15th 2010, NACE, Houston, USA, 2011, pp. 1–13
18. VDM® Alloy 625 Nicrofer 6020 hMo. Data Sheet No. 4118. Revision 03 May 2018.
19. Aydoğdu, G. H., Aydinol, M. K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behavior of AISI 316L type stainless steel. Corrosion Science 48.11 (2006): 3565-3583. https://doi.org/10.1016/j.corsci.2006.01.003
20. Maday, M. F., Mignone A., Vittori M. The application of the electrochemical potentiokinetic reactivation method for detecting sensitization in Inconel 600. The influence of some testing parameters. Corr. Sci. 28 (9) (1988) 887–900. https://doi.org/10.1016/0010-938X(88)90037-6
21. ASTM G28 - 02(2015). Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys. American Society for Testing and Materials
22. Lemos G. V. B., Meinhardt, C. P., Dias, A. R., Reguly, A. (2021) Friction stir welding in corrosion resistant alloys, Science and Technology of Welding and Joining, 26:3, 227-235, https://doi.org/10.1080/13621718.2021.1884800
23. Kohler, M., Heubner U. Time-temperature-sensitization and time-temperature-precipitation behavior of Alloy 625. Corrosion 96, Paper No. 427, NACE International, Houston, TX, 1996.
24. Choi, D. H., Ahn, B. W., Quesnel, D. J., Jung, S. B. Behavior of β phase (Al3Mg2) in AA 5083 during friction stir welding. Intermetallics. p. 120-127, 2013, https://doi.org/10.1016/j.intermet.2012.12.004
25. Rodriguez, N. A., Almanza E., Perez M. J., Muñiz, C. R., Packer, S., Steel, R. (2010). Analysis of sensitization phenomenon in friction stir welded 304 stainless steel. Frontiers of Materials Science in China. 4. 415-419. https://doi.org/10.1007/s11706-010-0102-4
26. Guo, C., Ying, M., Dang, H., Hu, R., Chen, F. Mater. Res. Express 8 035103. https://doi.org/10.1088/2053-1591/abe977
27. McCoy, S. A; Shoemaker, L. E.; Crum, J. R. Corrosion Performance and Fabricability of the New Generation of Highly Corrosion-Resistant Nickel-Chromium-Molybdenum Alloys. Special Metals.