[1] J. You, Z. Wang, Y. Du, H. Yuan, P. Zhang, J. Zhou, F. Liu, C. Li, F. Hu, Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres, Biomaterials 34(18) (2013) 4510-4519.
[2] J. You, G. Zhang, C. Li, Exceptionally High Payload of Doxorubicin in Hollow Gold Nanospheres for Near-Infrared Light-Triggered Drug Release, ACS nano 4(2) (2010) 1033-1041.
[3] W.R. Chen, R. Carubelli, H. Liu, R.E. Nordquist, Laser immunotherapy: a novel treatment modality for metastatic tumors, Mol Biotechnol 25(1) (2003) 37-44.
[4] D. Zhang, J. Zhang, Q. Li, A. Song, Z. Li, Y. Luan, Cold to Hot: Rational Design of a Minimalist Multifunctional Photo-immunotherapy Nanoplatform toward Boosting Immunotherapy Capability, ACS applied materials & interfaces 11(36) (2019) 32633-32646.
[5] L. Luo, C. Zhu, H. Yin, M. Jiang, J. Zhang, B. Qin, Z. Luo, X. Yuan, J. Yang, W. Li, Y. Du, J. You, Laser Immunotherapy in Combination with Perdurable PD-1 Blocking for the Treatment of Metastatic Tumors, ACS nano 12(8) (2018) 7647-7662.
[6] F. Zhou, X. Li, M.F. Naylor, T. Hode, R.E. Nordquist, L. Alleruzzo, J. Raker, S.S. Lam, N. Du, L. Shi, X. Wang, W.R. Chen, InCVAX--a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity, Cancer Lett 359(2) (2015) 169-177.
[7] Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng, Y. Wang, S. Chen, X. Zheng, L. Zeng, M. Guo, X. Zhang, Z. Tian, Fighting Immune Cold and Reprogramming Immunosuppressive Tumor Microenvironment with Red Blood Cell Membrane-Camouflaged Nanobullets, ACS nano 14(12) (2020) 17442-17457.
[8] L.-P. Zhao, R.-R. Zheng, J.-Q. Huang, X.-Y. Chen, F.-A. Deng, Y.-B. Liu, C.-Y. Huang, X.-Y. Yu, H. Cheng, S.-Y. Li, Self-Delivery Photo-Immune Stimulators for Photodynamic Sensitized Tumor Immunotherapy, ACS nano 14(12) (2020) 17100-17113.
[9] F. Zhou, J. Yang, Y. Zhang, M. Liu, M.L. Lang, M. Li, W.R. Chen, Local Phototherapy Synergizes with Immunoadjuvant for Treatment of Pancreatic Cancer through Induced Immunogenic Tumor Vaccine, Clinical cancer research : an official journal of the American Association for Cancer Research 24(21) (2018) 5335-5346.
[10] L. Luo, X. Li, J. Zhang, C. Zhu, M. Jiang, Z. Luo, B. Qin, Y. Shi, H. Yin, X. Yuan, Active Modulation of Memory CD8+ T cells Through a Photothermal-Metbolism Based Tumor Vaccine for Cancer Prevention and Treatment, (2020).
[11] Y. Li, X. Liu, W. Pan, N. Li, B. Tang, Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer, Chemical communications (Cambridge, England) 56(9) (2020) 1389-1392.
[12] J. Peng, Y. Xiao, W. Li, Q. Yang, L. Tan, Y. Jia, Y. Qu, Z. Qian, Photosensitizer Micelles Together with IDO Inhibitor Enhance Cancer Photothermal Therapy and Immunotherapy, Advanced science (Weinheim, Baden-Wurttemberg, Germany) 5(5) (2018) 1700891.
[13] Q. Li, D. Zhang, J. Zhang, Y. Jiang, A. Song, Z. Li, Y. Luan, A Three-in-One Immunotherapy Nanoweapon via Cascade-Amplifying Cancer-Immunity Cycle against Tumor Metastasis, Relapse, and Postsurgical Regrowth, Nano Letters 19(9) (2019) 6647-6657.
[14] A. Gao, B. Chen, J. Gao, F. Zhou, M. Saeed, B. Hou, Y. Li, H. Yu, Sheddable Prodrug Vesicles Combating Adaptive Immune Resistance for Improved Photodynamic Immunotherapy of Cancer, Nano Letters 20(1) (2020) 353-362.
[15] W. Li, X. Guo, F. Kong, H. Zhang, L. Luo, Q. Li, C. Zhu, J. Yang, Y. Du, J. You, Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres, J Control Release 258 (2017) 171-181.
[16] W. Li, W. Hou, X. Guo, L. Luo, Q. Li, C. Zhu, J. Yang, J. Zhu, Y. Du, J. You.Temperature-controlled, phase-transition ultrasound imaging-guided photothermal-chemotherapy triggered by NIR light,Theranostics. 2018 Apr 30;8(11):3059-3073.
[17] J. You, P. Zhang, F. Hu, Y. Du, H. Yuan, J. Zhu, Z. Wang, J. Zhou, C. Li, Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy, Pharmaceutical research 31(3) (2014) 554-565.
[18] T. Sun, X. Chen, X. Wang, S. Liu, J. Liu, Z. Xie, Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein, Materials Chemistry Frontiers 3(1) (2019) 127-136.
[19] J. Zhou, M. Li, Y. Hou, Z. Luo, Q. Chen, H. Cao, R. Huo, C. Xue, L. Sutrisno, L. Hao, Y. Cao, H. Ran, L. Lu, K. Li, K. Cai, Engineering of a Nanosized Biocatalyst for Combined Tumor Starvation and Low-Temperature Photothermal Therapy, ACS nano 12(3) (2018) 2858-2872.
[20] L. Huang, Y. Li, Y. Du, Y. Zhang, X. Wang, Y. Ding, X. Yang, F. Meng, J. Tu, L. Luo, C. Sun, Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy, Nature communications 10(1) (2019).
[21] D. Liu, L. Ma, L. Liu, L. Wang, Y. Liu, Q. Jia, Q. Guo, G. Zhang, J. Zhou, Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria, ACS applied materials & interfaces 8(37) (2016) 24455-24462.
[22] Z. Wang, S. Li, M. Zhang, Y. Ma, Y. Liu, W. Gao, J. Zhang, Y. Gu, Laser-Triggered Small Interfering RNA Releasing Gold Nanoshells against Heat Shock Protein for Sensitized Photothermal Therapy, Advanced science (Weinheim, Baden-Wurttemberg, Germany) 4(2) (2017) 1600327.
[23] Y. Cao, X. Meng, D. Wang, K. Zhang, W. Dai, H.A.-O. Dong, X.A.-O. Zhang, Intelligent MnO(2)/Cu(2- x)S for Multimode Imaging Diagnostic and Advanced Single-Laser Irradiated Photothermal/Photodynamic Therapy, (1944-8252 (Electronic)).
[24] L. Song, X. Dong, S. Zhu, C. Zhang, W. Yin, X. Zhang, X. Liu, Z.A.-O. Gu, Bi(2) S(3) -Tween 20 Nanodots Loading PI3K Inhibitor, LY294002, for Mild Photothermal Therapy of LoVo Cells In Vitro and In Vivo, (2192-2659 (Electronic)).
[25] L. Shao, Q. Li, C. Zhao, J. Lu, X. Li, L. Chen, X. Deng, G. Ge, Y. Wu, Auto-fluorescent polymer nanotheranostics for self-monitoring of cancer therapy via triple-collaborative strategy, (1878-5905 (Electronic)).
[26] M. Dong, X.Z. Xiao, Z.G. Su, Z.H. Yu, C.G. Qian, J.H. Liu, J.C. Zhao, Q.A.-O. Shen, Light-Induced ROS Generation and 2-DG-Activated Endoplasmic Reticulum Stress by Antitumor Nanosystems: An Effective Combination Therapy by Regulating the Tumor Microenvironment, (1613-6829 (Electronic)).
[27] S.-W. Huang, S.-T. Wang, S.-H. Chang, K.-C. Chuang, H.-Y. Wang, J.-K. Kao, S.-M. Liang, C.-Y. Wu, S.-H. Kao, Y.-J. Chen, J.-J. Shieh, Imiquimod Exerts Antitumor Effects by Inducing Immunogenic Cell Death and Is Enhanced by the Glycolytic Inhibitor 2-Deoxyglucose, Journal of Investigative Dermatology 140(9) (2020) 1771-1783.e6.
[28] S.S. Shah, G.A. Rodriguez, A. Musick, W.M. Walters, N. de Cordoba, E. Barbarite, M.M. Marlow, B. Marples, J.S. Prince, R.J. Komotar, S. Vanni, R.M. Graham, Targeting Glioblastoma Stem Cells with 2-Deoxy-D-Glucose (2-DG) Potentiates Radiation-Induced Unfolded Protein Response (UPR). LID - 10.3390/cancers11020159 [doi] LID - 159, (2072-6694 (Print)).
[29] S. Gupta, A. Roy, B.S. Dwarakanath, Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy, Frontiers in oncology 7 (2017) 68.
[30] B. Raud, P.J. McGuire, R.G. Jones, T. Sparwasser, L. Berod, Fatty acid metabolism in CD8(+) T cell memory: Challenging current concepts, Immunological reviews 283(1) (2018) 213-231.
[31] L. Almeida, M. Lochner, L. Berod, T. Sparwasser, Metabolic pathways in T cell activation and lineage differentiation, Seminars in immunology 28(5) (2016) 514-524.
[32] M.D. Buck, D. O'Sullivan, R.I. Klein Geltink, J.D. Curtis, C.H. Chang, D.E. Sanin, J. Qiu, O. Kretz, D. Braas, G.J. van der Windt, Q. Chen, S.C. Huang, C.M. O'Neill, B.T. Edelson, E.J. Pearce, H. Sesaki, T.B. Huber, A.S. Rambold, E.L. Pearce, Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming, Cell 166(1) (2016) 63-76.
[33] V.A. Gerriets, J.C. Rathmell, Metabolic pathways in T cell fate and function, Trends Immunol 33(4) (2012) 168-173.
[34] S. Kouidhi, M.Z. Noman, C. Kieda, A.B. Elgaaied, S. Chouaib, Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function, Front Immunol 7 (2016) 114-114.
[35] J. Rolf, M. Zarrouk, D.K. Finlay, M. Foretz, B. Viollet, D.A. Cantrell, AMPKalpha1: a glucose sensor that controls CD8 T-cell memory, European journal of immunology 43(4) (2013) 889-896.
[36] L. Zhang, P. Romero, Metabolic Control of CD8(+) T Cell Fate Decisions and Antitumor Immunity, Trends Mol Med 24(1) (2018) 30-48.
[37] S. Andrzejewski, P.M. Siegel, J. St-Pierre, Metabolic Profiles Associated With Metformin Efficacy in Cancer, Front Endocrinol (Lausanne) 9 (2018) 372-372.
[38] S. Eikawa, M. Nishida, S. Mizukami, C. Yamazaki, E. Nakayama, H. Udono, Immune-mediated antitumor effect by type 2 diabetes drug, metformin, Proceedings of the National Academy of Sciences of the United States of America 112(6) (2015) 1809-1814.
[39] E.L. Pearce, M.C. Walsh, P.J. Cejas, G.M. Harms, H. Shen, L.S. Wang, R.G. Jones, Y. Choi, Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature 460(7251) (2009) 103-107.
[40] S. Herzig, R.J. Shaw, AMPK: guardian of metabolism and mitochondrial homeostasis, Nat Rev Mol Cell Biol 19(2) (2018) 121-135.
[41] E.H. Ma, M.C. Poffenberger, A.H.T. Wong, R.G. Jones, The role of AMPK in T cell metabolism and function, Current Opinion in Immunology 46 (2017) 45-52.
[42] L. Luo, X. Li, J. Zhang, C. Zhu, M. Jiang, Z. Luo, B. Qin, Y. Wang, B. Chen, Y. Du, Y. Lou, J. You, Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment, Biomaterials 270 (2021) 120678.
[43] L. Luo, J. Yang, C. Zhu, M. Jiang, X. Guo, W. Li, X. Yin, H. Yin, B. Qin, X. Yuan, Q. Li, Y. Du, J. You, Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors, J Control Release 278 (2018) 87-99.
[44] B. Yang, Y. Chen, J. Shi, Tumor-Specific Chemotherapy by Nanomedicine-Enabled Differential Stress Sensitization, Angew Chem Int Ed Engl 59(24) (2020) 9693-9701.
[45] N. Dumauthioz, B. Tschumi, M. Wenes, B. Marti, H. Wang, F. Franco, W. Li, I.C. Lopez-Mejia, L. Fajas, P.C. Ho, A. Donda, P. Romero, L. Zhang, Enforced PGC-1alpha expression promotes CD8 T cell fitness, memory formation and antitumor immunity, Cell Mol Immunol (2020).
[46] P.S. Chowdhury, K. Chamoto, A. Kumar, T. Honjo, PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8(+) T Cells and Facilitates Anti-PD-1 Therapy, Cancer Immunol Res 6(11) (2018) 1375-1387.
[47] M. Kurtoglu, N. Gao, J. Shang, J.C. Maher, M.A. Lehrman, M. Wangpaichitr, N. Savaraj, A.N. Lane, T.J. Lampidis, Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation, Mol Cancer Ther 6(11) (2007) 3049-3058.
[48] L. Hammerich, N. Bhardwaj, H.E. Kohrt, J.D. Brody, In situ vaccination for the treatment of cancer, Immunotherapy 8(3) (2016) 315-330.
[49] X. Tang, L. Tan, K. Shi, J. Peng, Y. Xiao, W. Li, L. Chen, Q. Yang, Z. Qian, Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy, Acta Pharmaceutica Sinica B 8(4) (2018) 587-601.
[50] R.B. Patel, M. Ye, P.M. Carlson, A. Jaquish, L. Zangl, B. Ma, Y. Wang, I. Arthur, R. Xie, R.J. Brown, X. Wang, R. Sriramaneni, K. Kim, S. Gong, Z.S. Morris, Development of an In Situ Cancer Vaccine via Combinational Radiation and Bacterial-Membrane-Coated Nanoparticles, Adv Mater 31(43) (2019) e1902626-e1902626.
[51] E.E. Sweeney, J. Cano-Mejia, R. Fernandes, Photothermal Therapy Generates a Thermal Window of Immunogenic Cell Death in Neuroblastoma, Small 14(20) (2018) e1800678.
[52] R.S. Riley, E.S. Day, Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 9(4) (2017).
[53] D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martín Rodríguez, J. García Solé, Nanoparticles for photothermal therapies, Nanoscale 6(16) (2014) 9494-9530.
[54] W.J. Turbitt, W. Demark-Wahnefried, C.M. Peterson, L.A. Norian, Targeting Glucose Metabolism to Enhance Immunotherapy: Emerging Evidence on Intermittent Fasting and Calorie Restriction Mimetics, Front Immunol 10 (2019) 1402.
[55] L. Li, L. Wang, J. Li, Z. Fan, L. Yang, Z. Zhang, C. Zhang, D. Yue, G. Qin, T. Zhang, F. Li, X. Chen, Y. Ping, D. Wang, Q. Gao, Q. He, L. Huang, H. Li, J. Huang, X. Zhao, W. Xue, Z. Sun, J. Lu, J.J. Yu, J. Zhao, B. Zhang, Y. Zhang, Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer, Cancer Res 78(7) (2018) 1779-1791.
[56] J.C. Wang, X. Sun, Q. Ma, G.F. Fu, L.L. Cong, H. Zhang, D.F. Fan, J. Feng, S.Y. Lu, J.L. Liu, G.Y. Li, P.J. Liu, Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization, Journal of cellular and molecular medicine (2018).
[57] J.-H. Cha, W.-H. Yang, W. Xia, Y. Wei, L.-C. Chan, S.-O. Lim, C.-W. Li, T. Kim, S.-S. Chang, H.-H. Lee, J.L. Hsu, H.-L. Wang, C.-W. Kuo, W.-C. Chang, S. Hadad, C.A. Purdie, A.M. McCoy, S. Cai, Y. Tu, J.K. Litton, E.A. Mittendorf, S.L. Moulder, W.F. Symmans, A.M. Thompson, H. Piwnica-Worms, C.-H. Chen, K.-H. Khoo, M. C. Hung, Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1, Molecular Cell 71(4) (2018) 606-620.e7.