n continuous prime numbers can combine a group of continuous even numbers. If an adjacent prime number is followed, the even number will continue. For example, if we take prime number 3, we can get even number 6. If we follow an adjacent prime number 5, we can get even numbers by using 3 and 5: 6, 8 and 10. If a group of continuous prime numbers 3,5,7,11,... P, we can get a group of continuous even numbers 6,8,10,12,..., 2n. Then if an adjacent prime number q is followed, the original group of even numbers 6,8,10,12,..., 2n will be finitely extended to 2 (n + 1) or more adjacent even numbers. My purpose is to prove that the continuity of prime numbers will lead to even continuity as long as 2 (n + 1) can be extended. If the continuity of even numbers is discontinuous, it violates the Bertrand Chebyshev theorem of prime numbers. Because there are infinitely many prime numbers: 3, 5, 7, 11,... We can get infinitely many continuous even numbers: 6,8,10,12,...